
Inclusion of Symbolic Domain-Knowledge into
Deep Neural Networks

THESIS

Submitted in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

by

Tirtharaj Dash
(ID No. 2016PHXF0421G)

Under the Supervision of
Ashwin Srinivasan

and

Co-supervision of
Sukanta Mondal

COMPUTER SCIENCE AND INFORMATION SYSTEMS

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI – 333 031 (INDIA)

July 2022

© Tirtharaj Dash

July 2022

All rights reserved

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI – 330 031 (INDIA)

CERTIFICATE

This is to certify that the thesis entitled “Inclusion of Symbolic Domain-Knowledge

into Deep Neural Networks” submitted by Tirtharaj Dash, bearing student ID No.

2016PHXF0421G for the award of Ph.D. degree of the institute, embodies original

work done by him under our supervision.

Signature of the Supervisor :

Name : ASHWIN SRINIVASAN

Designation : Senior Professor

Department of CS & IS and APPCAIR

BITS Pilani, K.K. Birla Goa Campus

Place : Goa

Date :

Signature of the Co-supervisor :

Name : SUKANTA MONDAL

Designation : Associate Professor

Department of Biological Sciences

BITS Pilani, K.K. Birla Goa Campus

Place : Goa

Date :

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI – 330 031 (INDIA)

DECLARATION

I, Tirtharaj Dash, declare that this thesis entitled “Inclusion of Symbolic Domain-

Knowledge into Deep Neural Networks”, submitted by me under the supervision

of Ashwin Srinivasan and co-supervision of Sukanta Mondal is a bonafide research

work. I also declare that the work carried out in this thesis has not been submitted

previously in part or in full to this university or any other university or institute for

award of any degree.

Signature of the Student :

Name : TIRTHARAJ DASH

ID No. : 2016PHXF0421G

Place : Goa

Date :

THIS THESIS IS DEDICATED TO MY GRANDPARENTS:

Shri Satyanarayan Dash (Grandfather)

Smt Sirisha Dash (Grandmother)

They were, therefore I am

Acknowledgements

There are a number of people and organisations to thank for their direct or indirect

contributions to my PhD journey.

My Supervisor, Professor Ashwin Srinivasan. For our joint work on some of the most

exciting problems in Machine Learning, and also for teaching me how to ‘Think’.

I am certainly improving at this. Or at least I think I am. His support and

motivation throughout this journey of my PhD have been immense, and I cannot

acknowledge this enough. Because of him, I got to meet and work with some of the

best researchers in India and abroad.

My Co-supervisor, Professor Sukanta Mondal. For introducing me to research at his

ABC Lab and teaching me how to stay positive in difficult times during research.

I have had opportunities to collaborate with him on some interesting problems in

Computational Biology.

My PhD Committee. For their timely support at various steps of my PhD: Professors

Bharat M. Deshpande, Vinayak Naik, Biju K. Raveendran, Angshuman Sarkar and

Dr. Aditya Challa.

My Co-authors, both in and outside BITS. For the exciting research, we conducted

together. I learnt much by working with: Professor Ross King, Dr. Oghenejokpeme

Orhobor, Dr. Lovekesh Vig, Dr. Gautam Shroff, Ramya Hebbalaguppe, Dr. Arijit

Roy, Dr. Ramprasad Joshi and Dr. A. Baskar.

My Collaborators. For providing access to data and background knowledge, used in

this dissertation. I am deeply thankful to Dr. Gustav Šourek (Czech Technical

University, Prague) for providing the dataset information. I thank the researchers

at the DTAI, University of Leuven, for suggestions on how to use the background

knowledge within DMax Chemistry AssistantTM. I also thank Dr. Oghenejokpeme

Orhobor and Professor Ross King for providing me with the initial set of background

knowledge definitions.

My Department. For providing an open and friendly atmosphere for research and

teaching. I am particularly grateful for the assistance given by the department

i

staff: Mr. Shreenivas Naik and Mr. Yellumaharaj Akalwadi. I feel fortunate to be

a member of this department.

My Students. For the effort, energy and enthusiasm they brought to many aspects of

my stay at BITS, including teaching, research and projects. I learnt more from

them than they did from me.

My Friends. For their unwavering support during this PhD. I thank the “Lunch-Box”

group, especially Dr. Anuradha V., Dr. A. Baskar and Dr. Ramprasad Joshi, for

the beautiful time spent together and for their insightful and wise discussions on

various aspects of life. I express my special thanks to Dr. Gunja Sachdeva for her

constant support and help during the writing of this dissertation. My appreciation

also goes out to Dr. Rakesh Ranjan Swain and Ayush Deep for being good friends,

and for their encouragement and support during my PhD. I also thank my cat

“KitCat”, who has been one of my great companions during my difficult times.

My Grandparents. For providing me every support to chase my dreams. My grandfa-

ther wanted me to excel in everything I did, and I am trying to fulfil that dream.

Since my childhood, my grandmother took care of me like a “mother”. I miss them.

My Parents and Sister. For their unconditional love, care and support.

Tirtharaj

July 2022

I thankfully acknowledge the partial support received from the sponsored research grant

EMR/2016/002766, DST-SERB, Government of India, awarded to my supervisor. I also

wish to thank my department for funding some of my conference registrations and travels.

I gratefully acknowledge the following organisations, for recognising my contributions:

(a) Machine Learning Journal (Springer) and the program committee of ILP-2018 for

adjudging my paper for the “Best Student Paper Award”; (b) The European Association

for Artificial Intelligence (EurAI) for the Travel Grant in 2018; (c) The Department of

Science and Technology, Government of India, for the AWSAR Award; (d) ICML 2021

for the Computational Biology Fellowship; and (e) Google Research India for selecting

me for the Graduate Research Symposium. Finally, I sincerely thank the people and

organisations developing the software used during this research: Prolog (Yap), MATLAB,

Unix Shell, Keras, PyTorch, LATEX, MathCha Editor and Overleaf.

T.D.

ii

iii

iv

Abstract

This dissertation is concerned with techniques for inclusion of domain-knowledge into

Deep Neural Networks (DNNs). We are primarily concerned with real-world scientific

problems with the following characteristics: (a) Data are naturally graph-structured (re-

lational), (b) The amount of data available is typically small, and (c) There is significant

domain-knowledge, usually expressed in some logical form (rules, taxonomies, constraints

and the like). Broadly, there are 3 different ways in which the domain-knowledge can

be incorporated into a DNN: by changing the input representation, by changing the loss

function, or by changing the model (structure and parameters). We propose techniques

for the inclusion of domain-knowledge into DNNs that change the input representation.

In particular, our principal contributions are as follows: (1) We study the inclusion

of complex domain-knowledge into Multilayer Perceptrons (MLPs) using relational fea-

tures and propositionalisation [LDG91]. We propose a utility-based stochastic sampling

technique for drawing features from a large but countable space of relational features;

(2) We propose a simplified technique called ‘vertex-enrichment’ for incorporating sym-

bolic domain knowledge into deep neural networks that deal with graph-structured data,

known as graph neural networks (GNNs); (3) We propose a systematic technique to

incorporate symbolic domain-knowledge into GNNs using the method of inverse entail-

ment [Mug95] available in Inductive Logic Programming (ILP); and (4) We construct a

sequence generation system using a modular combination of two deep generative models

and a discriminator model based on (3), and use this system for a problem of early-stage

lead discovery in drug design. Our implementations are techniques that combine neural

networks and symbolic representations, resulting in new neuro-symbolic models, such as:

Deep Relational Machines (DRMs), Vertex-Enriched Graph Neural Networks (VEGNNs),

Bottom-Graph Neural Networks (BotGNNs), and a modular end-to-end neuro-symbolic

system for the generation of novel molecules for drug design. Our primary hypothesis is

that inclusion of domain-knowledge can significantly improve the performance of a deep

neural network. We conduct large-scale empirical testing of our hypothesis, using nearly

75 datasets in the broad area of drug discovery that consist of over 200, 000 relational

data instances and with domain-knowledge containing about 100 relations. In all cases,

our empirical evidence supports the primary hypothesis and encourages the inclusion of

domain-knowledge into deep neural networks for prediction and explanation.

v

vi

Contents

Acknowledgements . i

Abstract . v

List of Acronyms . xxi

1 Introduction . 1

1.1 The Importance of Domain-Knowledge 4

1.2 Difficulties in Inclusion of Domain-Knowledge into Deep Neural Networks 5

1.3 Contributions of this Dissertation . 6

1.4 Organisation of the Dissertation . 7

2 Literature Review . 9

2.1 Focus of this Review . 10

2.2 Transforming the Input Data . 11

2.2.1 Propositionalisation . 11

2.2.2 Binary and n-ary Relations . 15

2.3 Transforming the Loss Function . 17

2.3.1 Syntactic Loss . 17

2.3.2 Semantic Loss . 18

2.4 Transforming the Model . 21

2.4.1 Constraints on Parameters . 21

2.4.2 Specialised Structures . 23

2.5 Summary of the Review . 26

3 Inclusion of Domain-Knowledge using Propositionalisation 29

3.1 Some Logic Programming Concepts . 31

3.2 Relational Data and Relational Features 32

3.3 Propositionalisation . 34

3.4 A Discrete Space of Relational Features 35

3.4.1 Bounding the Lattice of Relational Features 36

3.5 Utility-based Sampling of Relational Features 38

3.5.1 A Distributional Model of Discrete Search 40

vii

3.6 Application to Deep Relational Machines (DRMs) 51

3.7 Empirical Evaluation . 53

3.7.1 Aims . 53

3.7.2 Materials . 54

3.7.3 Method . 58

3.7.4 Results . 60

3.7.5 Limitations of DRMs . 64

3.8 Summary . 66

4 Simplified Inclusion of Relational Information using Vertex-Enrichment 69

4.1 Graph Neural Networks (GNNs) . 70

4.1.1 General working principle of GNNs 72

4.1.2 Note on GNN variants . 73

4.2 Inclusion of n-ary relations into GNNs by Enriching Vertex-Labels 74

4.2.1 Vertex-Enriched GNNs . 78

4.3 Empirical Evaluation . 80

4.3.1 Aims . 80

4.3.2 Materials . 80

4.3.3 Method . 81

4.3.4 Results . 83

4.3.5 Limitations of VEGNNs . 85

4.4 Summary . 87

5 Complete Inclusion of Relational Information using Inverse Entailment 89

5.1 Mode-Directed Inverse Entailment . 90

5.1.1 Modes . 93

5.1.2 Depth-Limited Bottom Clauses 95

5.2 BotGNNs . 98

5.2.1 Notations and Assumptions . 99

5.2.2 Construction of Bottom-Graphs 100

5.2.3 Some Properties of Clause-Graphs 104

5.2.4 Transformations for Graph Classification by a GNN 108

5.2.5 Note on Differences to Vertex-Enrichment 114

5.3 Empirical Evaluation . 117

5.3.1 Aims . 117

5.3.2 Materials . 117

5.3.3 Method . 118

5.3.4 Results . 120

5.4 Summary . 125

viii

6 BotGNN as a System Component: An Application to Drug Design . 127

6.1 The Problem . 127

6.2 System Design and Implementation . 130

6.2.1 Generating Acceptable Molecules 131

6.2.2 Obtaining Labels for Acceptable Molecules 132

6.2.3 Generating Active Molecules . 132

6.3 System Testing . 133

6.3.1 Materials . 133

6.3.2 Method . 134

6.3.3 Results . 137

6.4 Summary . 139

7 Conclusions and Future Work . 141

7.1 Summary of the Dissertation . 141

7.1.1 The Main Contributions . 141

7.1.2 The Main Findings . 142

7.2 Challenges and Future Work . 143

7.3 Closing Remarks . 144

A Background . 145

A.1 Deep Neural Networks . 145

A.2 Inductive Logic Programming (ILP) . 153

B Additional Experimental Details . 161

B.1 Details relevant to Chapter 3 . 161

B.2 Details relevant to Chapter 5 . 162

B.3 Details relevant to Chapter 6 . 162

Bibliography . 165

List of Publications . 187

Biography of the Candidate . 191

Biography of the Supervisor . 193

Biography of the Co-supervisor . 195

ix

x

List of Figures

1.1 An example of using present day machine learning systems as assistance for

scientific discoveries. The scientist-in-the-loop is a biologist. The biologist

conducts experiments in a biological system, obtains experimental obser-

vations. The biologist then extracts data that can be used to construct

machine learning model(s). Additionally, the machine learning system has

access to domain-knowledge that can be obtained from the biologist. The

machine learning system then conveys its predictions and explanations to

the biologist. 2

2.1 Informal descriptions of (a) logical; and (b) numerical constraints. 10

2.2 Construction of a deep neural network model M from data (D) using a

learner (L). We use π to denote the structure (organisation of various lay-

ers, their interconnections, etc.) and θ to denote the parameters (synaptic

weights) of the deep neural network. L denotes the loss function (for ex-

ample, cross-entropy loss in case of classification). 10

2.3 Some implications of using domain-knowledge for commonly-used deep

neural network architectures. Here MLP stands for Multilayer Percep-

tron, CNN stands for Convolutional Neural Network, RNN stands for Re-

currenural Network and GNN stands for Graph Neural Network. MLPs,

CNNs and RNNs are now commonplace architectures for deep neural net-

works and detailed descriptions can be found in any standard textbook

(for example, [BGC17, ZLLS21]). GNNs are increasingly the DNN model

of choice for dealing with graph-based data, and a good description can be

found in [Ham20]. In this dissertation, we will be mainly concerned with

MLPs and GNNs: the details required are in Appendix A. 12

2.4 Introducing background knowledge into deep neural network by transform-

ing data. T is a transformation block that takes input data D, background

knowledge (BK) and outputs transformed data D′ that is then used to

construct a deep model using a learner L. 13

xi

2.5 Introducing background knowledge into deep neural network by transform-

ing the loss function L. T block takes an input loss L and outputs a new

loss function L′ by transforming (augmenting or modifying) L based on

background knowledge (BK). The learner L then constructs a deep model

using the original data D and the new loss function L′. 17

2.6 Introducing background knowledge into deep neural network by transform-

ing the model (structure and parameter). In (a), the transformation block

T takes a input structure of a model π and outputs a transformed struc-

ture π′ based on background knowledge (BK). In (b), the transformation

block T takes a set of parameters θ of a model and outputs a transformed

set of parameters π′ based on background knowledge (BK). 21

2.7 Some selected works, in no particular order, showing the principal approach

of domain-knowledge inclusion into deep neural networks. DNN∗ refers to

a DNN structure dependent on intended task. We use ‘MLP’ here to

represent any neural network, that conforms to a layered-structure that

may or may not be fully-connected. RNN also refers to sequence models

constructed using Long Short-Term Memory (LSTM) or Gated Recurrent

Unit (GRU) cells. 27

3.1 Michalski’s “trains” problem; adapted from [Mic80, MMPS94]. 33

3.2 A fragment of the subsumption lattice of relational features for the trains

problem. 36

3.3 The subsumption lattice of relational features for the trains problem. The

space is bounded by p(X)← TRUE at the top and by the bottom-clause

(⊥B,M(e)) at the bottom. The size of the space is bounded by O(2|⊥B,M(e)|).

The relational features are sampled from this space. 37

3.4 Redrawn and adapted from [JRS08]. Identifying the best subset of rela-

tional features for constructing a DRM. The X-axis enumerates the dif-

ferent subsets of relational features that can be constructed by an ILP

engine (F denotes the set of all possible relational features that can be

constructed by the engine). The Y-axis shows the probability that a data

instance drawn randomly using some pre-specified distribution will be cor-

rectly classified by the constructed DRM, given the corresponding feature-

subset in X-axis. We wish to identify the subset that yields the highest

probability, without actually constructing all the features in F 39

3.5 The subsumption lattice of relational features for the trains problem. Each

feature is associated with a utility score (shown in red colour). Our pro-

posed utility-based sampling strategy selects features from this space. . . 40

xii

3.6 Known Hider Distribution: (Left) Entropy of the hider distribution vs. En-

tropy of the seeker distribution, (Right) Entropy of the hider distribution

vs. Expected number of misses by the seeker. 51

3.7 Unknown hider distribution, with more than 1 hider: (Left) p = 0.1,

(Right) p = 0.25. That is, the proportion of boxes in the H’s partition of

the step-approximation is known to be 10% and 25% of n. The number of

balls is varied from 1% of n to 25% of n (X-axis). The expected number

of misses is on the Y-axis. 52

3.8 Diagrammatic Representation of a Deep Relational Machine (DRM). The

examples shown at the bottom are the predicates in data and background

knowledge. The selection of relational features includes the feature con-

struction and sampling steps. 52

3.9 Diagrammatic Representation of Constructing a DRM using relational fea-

tures and propositionalisation. The inputs to an MLP represent a Boolean-

valued feature vector obtained by propositionalisation of the relational fea-

tures f1, . . . , fd. The parameters of the MLP are denoted as: W(ℓ), where

ℓ denotes the layer index. In implementations, any W(ℓ) may contain an

additional set of parameters called “bias weights” for which the inputs are

always 1. The output of the MLP is an a class-label obtained from the

class-probability vector of length k, where k is the number of classes. . . 53

3.10 A summary of the NCI-50 datasets (Total number of instances is approx.

220,000). Each instance in a dataset represents a chemical compound in

atom-bond representation, along with its associated anti-cancer activity

(positive or negative). Positive activity means the compound results in

50% growth inhibition of the tumor cells and negative activity means oth-

erwise. 54

3.11 Levels of organisation of the background knowledge. Level 0 corresponds

to the standard atom and bond information for the molecular compounds;

Level 1 refers to the existence of various functional groups and ring struc-

tures; Level 2 knowledge is inferred further from Level 0 and 1. 55

3.12 Hierarchy of various functional groups in the background knowledge. . . . 56

3.13 Hierarchy of various ring structures in the background knowledge. 57

xiii

3.14 Improvements in predictive performance of DRMs, when provided with

domain-knowledge through propositionalisation of relational features con-

structed using simple random sampling strategy by an ILP engine. The

average number of relational features across the datasets is roughly 3800.

Here X-axis represents the datasets (total 73 NCI datasets), and Y-axis

shows the gain in predictive performance with respect to the baseline.

Baselines (“1”) are the models without domain-knowledge. The corre-

sponding quantitative comparison is shown in Figure 3.15. 61

3.15 Comparison of predictive performance of DRM (Random Sampling) with

and without domain-knowledge. The average number of relational fea-

tures across the datasets is roughly 3800. The tabulations are the number

of datasets on which DRM has higher, lower or equal predictive accuracy

(obtained on a holdout set) than DRM without domain-knowledge. Sta-

tistical significance is computed by the Wilcoxon signed-rank test. 61

3.16 Qualitative comparison of predictive performance of DRMs (Hide-and-

Seek:“HS” vs Random:“Rand”) with different number of relational fea-

tures: {50, 100, 250, 500, 1000, 2500, 3800}; The number 3800 is to match

the average number of features sampled using simple random sampling.

Here X-axis represents the datasets (total 73 NCI datasets), and Y-axis

shows the gain in predictive performance with respect to the baseline.

Baseline here is the normalised performance of DRM-Rand: the “1” line.

The corresponding quantitative comparison is shown in Figure 3.17. . . . 62

3.17 Comparison of predictive performance of DRM constructed with relational

features sampled using hide-and-seek sampling strategy against DRM con-

structed using relational features sampled using simple random sampling.

The last row contains 3800 features to match the average number of fea-

tures sampled using simple random sampling. The tabulations are the

number of datasets on which DRM(Hide-and-Seek) has higher, lower or

equal predictive accuracy (obtained on a holdout set) than DRM(Rand).

Statistical significance is computed by the Wilcoxon signed-rank test. . . 63

3.18 Comparison of predictive performance of DRM against LRNN [SAZ+18]

and BCP+MLP [FZG14]. The DRM used here is the one constructed

using 3800 relational features sampled using hide-and-seek sampling. The

tabulations are the number of datasets on which DRM has higher, lower or

equal predictive accuracy (obtained on a holdout set) than its counterparts.

Statistical significance is computed by the Wilcoxon signed-rank test. . . 63

3.19 Degradation of DRM performance when expressivity of features is de-

creased from an unrestricted class to the class of relational features ob-

tained using simple features as discussed in [MS98]. 65

xiv

3.20 The minimum effort required to sample various number of relational fea-

tures using the hide-and-seek sampling. The values tabulated are the num-

ber of relational features drawn from the large space features to obtain the

number of features in the first column. 66

4.1 A diagrammatic representation of graph classification using a GNN. Graphs

are of tuples of the form (V,E, σ, ψ, ϵ), where V is a set of vertices; E is

a set of edges; σ is some neighbourhood function; ψ is a vertex-labelling;

and ϵ is an edge-labelling. Often σ is left out, and derived from the edges

in E. 73

4.2 Components involved in implementing the workflow in section 4.1 for

VEGNN models. The input is the vectorised representation of a vertex-

enriched graph, denoted here as V E-Graph(g) for an graph data-instance

g. The blocks ‘Conv’ and ‘Pool’ refer to the graph-convolution and graph-

pooling operations, respectively. The ‘Readout’ operation constructs a

graph representation by accumulating information from all the vertex in

the graph obtained after the pooling operation. The final graph repre-

sentation is obtained in the READOUT block by an element-wise sum

(shown as ⊕) of the individual graph-representations obtained after each

AGGREGATE-COMBINE block. MLP stands for Multilayer Perceptron. . 82

4.3 Qualitative comparison of predictive performance of VEGNNs against Base-

line (that is, GNN variants without access to domain-relations). Perfor-

mance refers to estimates of predictive accuracy (obtained on a holdout

set), and all performances are normalised against that of baseline perfor-

mance (taken as 1). No significance should be attached to the line joining

the data points: this is only for visual clarity. 84

4.4 Quantitative comparison of predictive performance of V EGNNs against

GNNs. Here GNN refers to the graph-based neural network without

domain-knowledge, and V EGNN refers to the network vertex-enriched

with the generic domain-knowledge described in section 3.7.2. The tabu-

lations are the number of datasets on which V EGNN has higher, lower

or equal predictive accuracy on a holdout-set. Statistical significance is

assessed by the Wilcoxon signed-rank test. 85

xv

4.5 Quantitative comparison of predictive performance of VEGNNs against

DRMs. Here V EGNN denotes the vertex-enriched GNN with R, and

DRM denotes the Deep Relational Machine constructed using proposi-

tionalisation of relational features. The relational features for a DRM are

sampled using the hide-and-seek sampling strategy proposed in Chapter 3.

The set of the hide-and-seek features is denoted by R′. The comparative

performance of VEGNNs against DRMs starts worsening after |R′| = 500,

which are not shown here. The tabulations are the number of datasets

on which V EGNN has higher, lower or equal predictive accuracy on a

holdout-set. Statistical significance is assessed by the Wilcoxon signed-

rank test. 86

4.6 Quantitative comparison of predictive performance of V EGNNs against

that of MLPs constructed using BCP features [FZG14]. The tabulations

are the number of datasets on which V EGNN has higher, lower or equal

predictive accuracy on a holdout-set. Statistical significance is assessed by

the Wilcoxon signed-rank test. 86

4.7 Figure showing (a) a molecule with 2 fused benzene rings, (b) its corre-

sponding molecular graph with vertices enriched with domain-relations. . 87

4.8 Figure highlighting a limitation of the vertex-enrichment technique for a

molecular graph. 87

5.1 For the gparent example: (a) depth-limited bottom-clause ⊥B,M,2(e); and

(b) the corresponding clause-graph where the vertex-labels (λ, µ)s and

(τ, γ)s are as provided in the preceding tables. The “dashed” square-box

and the “dashed” arrow are shown to indicate the vertex specifying the

head of the clause. The subscripts used in the labels correspond to the

S.No. in the tables, for example, (λ3, µ3) refers to the third-row in the first

table in this example; and, similarly, (τ4, γ4) refers to the fourth row in the

second table. 99

5.2 Construction and use of bottom-graphs for use by GNNs in this chapter.

We note that constituting the transformation of bottom-graphs are for the

GNN implementations used in this chapter. 113

5.3 Dataset summary. Each bottom-graph can be represented using (G, ·),
where G = (X, Y,E), where X represents the vertices corresponding to

the relations, Y represents the vertices corresponding to ground terms

in the bottom-clause constructed by MDIE, and E represents the edges

between X and Y . The last 3 columns are the average number of X, Y

and E in each bottom-graph in a dataset. 117

xvi

5.4 Components involved in implementing the workflow in section 4.1 for Bot-

GNN models. ‘Conv’ and ‘Pool’ refer to the graph-convolution and graph-

pooling operations, respectively. The ‘Readout’ operation constructs the

representation of a graph by accumulating information from all the ver-

tex in the graph obtained after the pooling operation. The final graph-

representation is obtained in the READOUT block by an element-wise sum

(shown as ⊕) of the individual graph representations obtained after each

AGGREGATE-COMBINE block. MLP stands for Multilayer Perceptron. . 119

5.5 Qualitative comparison of predictive performance of BotGNNs against

Baseline (that is, GNN variants without access to domain-relations). Per-

formance refers to estimates of predictive accuracy (obtained on a holdout

set), and all performances are normalised against that of baseline perfor-

mance (taken as 1). No significance should be attached to the line joining

the data points: this is only for visual clarity. 121

5.6 Comparison of predictive performance of BotGNNs against GNNs. The

tabulations are the number of datasets on which BotGNN has higher,

lower or equal predictive accuracy (obtained on a holdout set) than GNN .

Statistical significance is computed by the Wilcoxon signed-rank test. . . 122

5.7 Comparison of predictive performance of BotGNNs against V EGNNs.

The tabulations are the number of datasets on which BotGNN has higher,

lower or equal predictive accuracy (obtained on a holdout set) than a

V EGNN . Statistical significance is computed by the Wilcoxon signed-

rank test. 122

5.8 Quantitative comparison of predictive performance of BotGNNs against

DRMs. DRM denotes the Deep Relational Machine constructed using

propositionalisation of relational features. The relational features for a

DRM are sampled using the hide-and-seek sampling strategy proposed

in Chapter 3. The comparative performance of BotGNNs against DRMs

starts worsening after 1000 features, which are not shown here. The tab-

ulations are the number of datasets on which BotGNN has higher, lower

or equal predictive accuracy on a holdout-set. Statistical significance is

assessed by the Wilcoxon signed-rank test. 123

5.9 Comparison of predictive performance of BotGNNs with an MLP con-

structed using BCP-based relational features. The tabulations are the

number of datasets on which a BotGNN has higher, lower or equal pre-

dictive accuracy (obtained on a holdout set) than BCP+MLP. 124

xvii

5.10 Characterisation of vector-representation used for model-construction by

BotGNNs, DRMs and BCP+MLP. Minimum/maximum values of the range

are only shown to 3 meaningful digits (the actual values are not relevant

here). The graph-representations (also, called graph-embeddings) for Bot-

GNNs are constructed internally by the GNN. By “sparse” we mean that

there are many 0-values, and by “very sparse”, we mean the values are

mostly 0. 124

5.11 Comparison of predictive performance of BotGNNs with an ILP learner

(Aleph system): (a) Without hyperparameter tuning in Aleph; (b) With

hyperparameter tuning. In (a), the tabulations are the number of datasets

on which BotGNN has higher, lower or equal predictive accuracy (ob-

tained on a holdout set) than the ILP learner. In (b), each entry is the

average of the accuracy obtained across 10-fold validation splits (as in

[SKB03]) . 125

6.1 Early-stage drug-design (adapted from [WBS+15]). 128

6.2 An ideal conditional generator for instances of a random-variable denoting

data (X) given a value for a random-variable denoting labels (Y) and

domain-knowledge (B). Here, Z ∼ D denotes a random variable Z is

distributed according to the distribution D. If the distributions shown are

known, then a value for X is obtainable through the use of Bayes rule,

either exactly or through some form approximate inference. 128

6.3 Training a conditional generator for generating “active” molecules. For the

present, we assume the generator (G1) and discriminator (D) have already

been trained (the G1 and D modules generate acceptable molecules and

their labels respectively: the D̂’s are approximations to the corresponding

true distribution). The Transducer converts the output of G1 into a form

suitable for the discriminator. Actual implementations used in the chapter

will be described below. 130

6.4 Training a generator for acceptable molecules. Training data consists of

molecules, represented as SMILES strings, drawn from a database ∆.

The VAE is a model constructed using the training data and generates

molecules represented by SMILES strings. BG denotes domain-knowledge

consisting of constraints on acceptable molecules. The filter acts as a

rejection-sampler: only molecules consistent with BG pass through. . . . 131

6.5 Architecture of the VAE in Figure 6.4. m1,m2, n, k denote the number of

blocks. The decoder along with the µ and σ constitute the generator that

generates molecules in SMILES representation. 132

xviii

6.6 Discriminator based on BotGNN. “Logical” molecules refers to a logic-

based representation of molecules. Bottom-graphs are a graph-based repre-

sentation of most-specific (“bottom”) clauses constructed for the molecules

by an ILP implementation based on mode-directed inverse entailment. . . 132

6.7 Summary of system performance. BD = B1 denotes that the discriminator

has access to both propositional and relational domain-knowledge; BD =

B0 denotes that the discriminator has access to propositional domain-

knowledge only. Random denotes a random draw of molecules from the

unconditional molecule generator G1. M denotes the set of molecules

drawn (from the conditional generator, or from the unconditional gener-

ator for Random). The results are compared against the performance of

a methodology purely based on Deep Reinforcement Learning [KBBR21].

M ′ denotes the set of acceptable molecules generated in the sample of M

molecules (acceptable molecules satisfy molecular constraints defined on

molecular properties). Act denotes the proportion of M ′ that are pre-

dicted active (the proxy model predicts an pIC50 ≥ 6.0); Sim denotes the

proportion of M ′ that are similar to active target inhibitors (Tanimoto

similarity to active JAK2 inhibitors > 0.75). The numbers in parentheses

denote the standard deviation in the corresponding estimate. 138

6.8 A chemical assessment of possible new JAK2 inhibitors. The molecules

are from the sample of molecules from the conditional generator, that are

predicted to have high JAK2 activity, and are significantly dissimilar to

known inhibitors. The assessment is done by a computational chemist†.

The assessment uses structural features and functional groups identified

for the JAK2 site in the literature [KBBR21, DS13, DYCFY14]. 140

A.1 Construction of a DNN model from data (Based on Figure 2.2; reproduced

here for readability and completeness). 146

A.2 Representing MLP with layers as boxes. No importance to be given to the

width of the boxes. The depth of the MLP is L. h denotes a vector of

hidden layer activations (also called hidden representation) and ŷ denotes

the outputs. Superscript (ℓ) represents the layer index. The arrows show

propagation of information (activations) from one layer to another. W(ℓ)

denotes the parameters (a matrix of synaptic weights) at layer ℓ. 147

A.3 Michalski’s trains problem; adapted from [Mic80, MMPS94]. 153

A.4 Bounded search space in Progol. 158

A.5 A fragment of the hypothesis space in Aleph for the grandparent example,

bounded by the most general hypothesis (at the top) and the most specific

hypothesis (at the bottom). 159

xix

xx

List of Acronyms

Adam Adaptive Moment Estimation (an optimisation algorithm)

AI Artificial Intelligence

Aleph A Learning Engine for Proposing Hypotheses (an ILP system)

BotGNN Bottom-Graph Neural Network

BK Background Knowledge

CNN Convolutional Neural Network

CONV Convolution (used for a block or a layer)

DL Deep Learning

DNN Deep Neural Network

DRM Deep Relational Machine

GNN Graph Neural Network

ILP Inductive Logic Programming

MDIE Mode-Directed Inverse Entailment

ML Machine Learning

MLP Multilayer Perceptron

NCI National Cancer Institute

NN Neural Network

POOL Pooling (used for a block or a layer)

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SMILES Simplified Molecular-Input Line-Entry System

VAE Variational Autoencoder

VEGNN Vertex-Enriched Graph Neural Network

XAI Explainable Artificial Intelligence

xxi

xxii

Chapter 1

Introduction

The history of “machines that learn” is almost as old as the history of modern Com-

puter Science. Of course, they figure prominently in Alan Turing’s famous 1950 paper

on Computing Machinery and Intelligence [Tur50], but proposals for connectionist-based

learning appear even earlier with the development of theories emulating biological learn-

ing by McCulloch and Pitts [MP43], and parameter update by Donald Hebb [Heb49]

and implementation of perceptron [Ros57], enabling the ‘training’ of a single-layered

model. Later, the method of back-propagating errors [RHW86] in a multi-layered con-

nectionist architecture led to its dramatic usage in recognising handwritten ZIP codes

[LBD+89]. The reincarnated term, used for connectionist architectures, is Neural Net-

works or Deep Neural Networks or DNNs, in short. This field has witnessed several

ground-breaking discoveries such as neural network models for learning from sequential

data [HS97], deep generative model [HOT06], greedy layer-wise pre-training of deep neu-

ral networks [BLPL07]. In 2012, ImageNet classification [DDS+09] by training a deep

neural network by efficiently using graphics processing units (GPUs) created a new wave

in the field [KSH12], and the rest is history.

At the time of writing this dissertation, deep neural networks are undergoing an

unprecedented resurgence in interest as the tools of choice in machine learning. Al-

though many of the techniques are not new, there are at least 3 different threads that

are driving recent activity “deep learning”, a term that was first introduced to machine

learning community by [Dec86], and to neural networks community by [Aiz99], however,

the presently prevailing usage of this term is due to the work by [HOT06]: First, deep

learning has become more useful as the amount of data has increased; Secondly, the sig-

nificant improvements of software and hardware architectures have allowed more complex

deep learning models to be trained in less time and with reasonable efficiency; Thirdly,

deep learning has solved complicated applications from all domains of science and engi-

neering with increasing predictive accuracy over time. These three threads have enabled

machine-learning “in-the-large”, allowing us to consider its application to problems about

which we know little, but for which we are able to obtain large amounts of data (or at

1

least, we have large amounts of data for problems related to the one we want to solve).

This dissertation is, however, about the use of modern-day deep learning in a dif-

ferent setting involving knowledge-rich problems. An important example is the area

of Artificial Intelligence (AI) for Science. This is concerned with the use of AI meth-

ods to accelerate our understanding of the natural world, and to assist the application

of this understanding to the development of areas of engineering, medicine, healthcare,

agriculture, environment and so on. An example of this is the development of Robot

Scientists [KWJ+04]. In this, advanced AI machinery is coupled with robotic wet-lab

hardware to execute the classic scientific “hypothesize-and-test” cycle characteristic of

scientific experimentation. The Robot Scientist is able to achieve, in some measure, the

following: (1) identifying the best explanation for a prediction based on what is known;

(2) suggesting hidden variables or mechanisms which could improve the prediction; and

(3) proposing experiments to test the hypotheses. While further ambitious plans exist

for Robot Scientists for completely automating scientific discoveries [Kit16], the current

use of machine learning for scientific discoveries remains as providing assistance to the

scientist(s) in the loop. An example of such a collaborative system is in Figure 1.1, which

intends to describe a setting where a scientist is attempting to understand some (natural)

phenomena. They conduct experiments and obtain a set of observations, which are pro-

vided as data to a machine learning (ML) engine. Additionally, the scientist also provides

the machine learning engine with domain-expertise that maybe relevant to understanding

the phenomenon being studied.

Figure 1.1: An example of using present day machine learning systems as assistance
for scientific discoveries. The scientist-in-the-loop is a biologist. The biologist conducts
experiments in a biological system, obtains experimental observations. The biologist then
extracts data that can be used to construct machine learning model(s). Additionally, the
machine learning system has access to domain-knowledge that can be obtained from the
biologist. The machine learning system then conveys its predictions and explanations to
the biologist.

In the diagram shown above, it is unclear how the domain information from an expert

be encoded and provided while building a collaborative system. It is imperative, however,

for such collaborative Human-and-AI systems to work effectively, we need at least the

following: (1) We have to be able to tell the learner what we know, in a suitably precise

2

form; and (2) The machine has to be able to tell us what it has found, in a suitably

understandable form. Point (1) concerns with some form of encoding of the available

domain expertise, and point (2) concerns with some form of human-understandable ex-

planation of the machine’s prediction(s). While the remarkable recent successes of deep

neural networks [Sch15] on a wide variety of tasks makes a substantial case for their use

in model construction, it is not immediately obvious how either (1) or (2) should be done

with deep neural networks. The research carried out in this dissertation is focused on

providing some answers to (1), that is, incorporating domain information into deep neu-

ral networks. However, understanding models constructed by deep neural networks are

a different area of intense research activity (see, for example, some recent surveys in this

area: [Lip16, ADRDS+20]). This dissertation does not answer this aspect of research.

In the last few years, incorporating some form of domain-knowledge into learning has

been emphasised strongly in the deep learning and reasoning community. Experts are

stressing that incorporating domain-knowledge into deep neural networks could result in:

(a) achieving highly general models and therefore could result in higher predictive perfor-

mance than the models built only with available data [Mar18, BDR+20]; (b) resulting in

robust reasoning systems [Mar20]. Some of these points have been investigated recently

in a research report on the inclusion of domain-knowledge into deep learning [St̊a21]. The

report also highlights that providing domain information may not always be provided as

input to a model directly but can be represented as some form of internal logic or exter-

nal constraint. Furthermore, the inclusion of domain-knowledge in learning could solve

some challenges in those scientific areas that require understanding data using human-

machine collaboration, such as in medical diagnosis and drug discovery. All the above

benefits could be achieved even if available data is scarce and the machine is provided

with human-knowledge of the domain encoded in a sufficiently precise form. It is also

unsurprising that a recent report on AI for Science [STN+20] identifies the incorporation

of domain-knowledge as the first of the 3 Grand Challenges in developing AI systems:

“ML and AI are generally domain-agnostic. . . Off-the-shelf practice treats

[each of these] datasets in the same way and ignores domain knowledge that

extends far beyond the raw data itself—such as physical laws, available for-

ward simulations, and established invariances and symmetries—that is readily

available. . . Improving our ability to systematically incorporate diverse forms

of domain knowledge can impact every aspect of AI. . . ”

Motivated by the above-discussed points, we aim to pursue this research direction,

and propose new and effective methods that could help to construct robust and accurate

scientific assistants. Specifically, our interest is in problems where both data and domain-

knowledge are uniformly represented in first-order logic. In what follows, we first describe

the importance of domain-knowledge and provide a brief overview of the approaches in

3

this area. We then outline some major difficulties in inclusion of domain-knowledge into

deep neural networks. Next, we state the main contributions of this dissertation and

provide detail on how the chapters in this dissertation are organised.

1.1 The Importance of Domain-Knowledge

Even though the idea of incorporating domain-knowledge into learning seems more pro-

nounced recently; this is not entirely a new direction in machine learning. The earliest

work in incorporating domain-knowledge into various AI methods, both symbolic and

connectionist dates back to the late 1960s or early 1970s. Probably, the oldest research

in this direction is by Plotkin in his doctoral thesis on “Automatic Methods of Induc-

tive Inference” [Plo72] in which he defined generalisation from experience, relative to a

body of knowledge. Michalski attempted to develop learning systems in which concepts

were expressed in augmented predicate calculus. For example, Michaski’s INDUCE pro-

gram [Mic73, Mic80] augments the data rules input by the user with the inference rules

in the domain-knowledge resulting in the construction of new rules. CONFUCIUS is a

program that works with the principle that descriptions of inputs could be improved by

learning domain-knowledge [CS82]. In the implementation of Marvin [SB86], a successor

of CONFUCIUS, Sammut and Banerji discuss how existing (domain) concepts can be

learned and re-used to learn new (domain) concepts. Here the domain concept is pro-

vided by a domain-expert (human) in an indirect fashion: the domain-expert shows the

learner (Marvin) a positive example of the concept (the target concept) to be learned.

The description of the example represents the concept which contains only one object

(the shown example), and Marvin’s task is to generalise the initial example in a manner

that it describes all the positive examples of the target concept and none of the negative

examples. Duce [Mug87] is a machine learning system that uses six transformation op-

erators to construct high-level domain-features for a set of examples objects from their

descriptions. Duce has its successor in CIGOL [MB88] where, given examples of a high-

level predicate, CIGOL generates related sub-concepts to be named by a human-expert.

In the process, CIGOL uses existing clauses in the database to be treated as domain-

knowledge while constructing new sub-concepts. Such ideas of learning from examples

and domain-knowledge comes under the umbrella term coined in 1991, called “Induc-

tive Logic Programming (ILP)” [Mug91]. ILP provides a systematic learning method to

induce hypotheses from data and background knowledge. Here data, background knowl-

edge and hypotheses are uniformly represented in first-order logic. In the area of neural

networks, knowledge-based artificial neural network (KBANN) [TSN90, TS94] is, to the

best of our knowledge, the oldest method that incorporates domain-knowledge encoded

as simple propositional rules.

In the next chapter, we conduct a comprehensive survey of a wide range of studies

4

that incorporate some form of domain-knowledge into deep neural networks. In there,

we have studied that any form of domain-knowledge constrains either the structure or

the parameters of a deep network. Therefore, we refer to these as “constraints”. We

will restrict ourselves to domain-knowledge that can be represented either as logical or

as numerical constraints. Under logical constraints, we consider domain-knowledge that

is represented in propositional logic, predicate logic, including binary or more generally

n-ary relations, canonical normal forms, and program primitives. The numerical con-

straints are represented by priors on the model structure and parameters, leading to the

introduction of additional terms in the loss function of the model. So, we restrict the

review here to research that involves these forms of background knowledge. We note that

there is a class of hybrid systems combining neural and logical systems (see for example,

[GBG12, RDMM20]) that attempts to emulate logical inference or represent logical con-

cepts. Although this hybrid approach is relevant to our present research conducted in

this dissertation, incorporation of logically encoded domain-knowledge into deep neural

networks is more specific than just constructing a hybrid system. We also categorise the

approaches of inclusion of domain-knowledge into a deep neural network as follows: (1)

transforming the data representation; (2) transforming the loss function; and (3) trans-

forming the model (either its structure or parameters). In a sense, this progression reflects

a graded increase in the complexity of changes involved. More detailed discussions on

the aspects discussed here are provided in Chapter 2.

1.2 Difficulties in Inclusion of Domain-Knowledge into

Deep Neural Networks

There are many difficulties associated with the inclusion of domain-knowledge into deep

neural networks. While these difficulties are elaborated in our next chapter, we provide

a non-exhaustive list of some of the purely implementational aspects, as follows:

• There is no standard framework for translating logical constraints to neural net-

works.

• Any form of logical constraint is not differentiable.

• Logical constraints can introduce cyclic dependencies if they are directly used to

construct a deep neural network structure.

• The process of introducing a loss term often results in a hard optimisation prob-

lem (sometimes constrained) to be solved. Furthermore, it may require additional

mathematical tools for a solution that can be implemented practically.

5

• Deep neural network structures constrained via logical domain-knowledge may not

always be scalable to large datasets.

• While numerical constraints are introduced into the loss function or as regularisation

terms, it is not straightforward and sometimes not very intuitive.

• A vast majority of the studies on incorporating some form of domain-knowledge into

a deep neural network, the data considered is often represented as a numeric feature

vectors or, in general, tensors. Adopting the underlying technique of learning from

data that has relational structures is not straightforward. One example of a problem

with high scientific value where data is relational is drug discovery, where each data

instance is a molecular compound [KMSS96].

None of the difficulties listed above is concerned with the broader conceptual question

of how domain-knowledge is to be acquired and represented in a machine-friendly form

in the first place. In this dissertation, we will not be addressing this conceptual difficulty.

Instead, we will focus on resolving some of the implementational issues for problems

for which domain-knowledge is already available in some machine-readable form. In

particular, we will focus our study on problems where domain-knowledge is encoded

as statements in a subset of first-order logic and is about data with some relational

structures.

1.3 Contributions of this Dissertation

In this dissertation, we are primarily concerned with real-world scientific problems with

the following characteristics: (a) Data are naturally graph-structured (relational), (b)

The amount of data available is typically small, and (c) There is significant domain-

knowledge, usually expressed in some logical form (rules, taxonomies, constraints and

the like). Below we outline the principal contributions made by this dissertation.

Conceptual. An approach to the stochastic selection of “relational features” as a mech-

anism of inclusion of domain-knowledge into multilayer perceptrons; An approach

for simplified inclusion of domain-knowledge into graph-based neural networks for

domain-knowledge that is represented in the form of hyperedges in a graph; An

approach for complete inclusion of domain-knowledge into graph-based neural net-

works, through the use of ideas from mode-directed inverse entailment;

Implementational. Techniques that combine deep neural networks and symbolic repre-

sentations resulting in the implementation of neuro-symbolic learners such as: Deep

Relational Machines (DRMs), Vertex-Enriched Graph Neural Networks (VEGNNs),

6

Bottom-Graph Neural Networks (BotGNNs); and a modular end-to-end neuro-

symbolic system that uses a BotGNN as a system component for generation of

novel molecules for drug-design;

Applications. Investigating the applications of implementations mentioned above on

large-scale carcinogenicity problems and lead-discovery problems relevant to drug

design.

A more detailed breakup of the contributions is as follows:

1. We construct multilayer perceptrons (MLPs) from relational data and background

knowledge using propositionalisation [LDG91], a technique in ILP that transforms

relations into a simpler format, typically a feature-vector or attribute-value repre-

sentation. Here, we propose a utility-based stochastic sampling method to draw

relational features from a large and countable discrete feature space.

2. We propose a simplified technique called ‘vertex-enrichment’ for incorporating sym-

bolic domain-knowledge into a class of deep neural networks that deal with graph-

structured data, known as graph neural networks. We also demonstrate how in-

corporating higher-order n-ary relations discovered by ILP can further improve the

predictive performance of vertex-enriched graph neural networks.

3. We propose a systematic technique to incorporate symbolic domain-knowledge

into graph neural networks using the method of inverse entailment available in

ILP [Mug95].

4. We construct a conditional deep generative model via the inclusion of domain-

knowledge by proposing a methodology that consists of a collaborative combination

of two generators and a discriminator proposed in the contribution 3 above. We

study the application of this collaborative model for the problem of early-stage lead

discovery in drug design.

1.4 Organisation of the Dissertation

The remainder of this dissertation is organised as follows:

In Chapter 2, we provide a review of the categories and subcategories of domain-

knowledge, and various methods of their inclusion into deep neural networks (DNNs).

We further examine some challenges in adopting the underlying techniques to deal with

relational data and symbolic domain-knowledge.

In Chapter 3, we construct DNNs by the standard method of propositionalisation of

relational features, constructed using ILP using data and background knowledge. Each

7

relational feature encodes some logical description of the data instance. The proposi-

tionalisation technique transforms a set of relational features into a simple format such

as numeric feature vectors that can be used as inputs for a deep neural network. We

propose a guided sampling strategy to sample relational features from a large count-

able discrete feature space. The class of DNNs investigated in this chapter are called

Multilayer Perceptrons (MLPs).

Chapter 4 proposes a simplification method called “vertex-enrichment” to incorporate

symbolic domain-knowledge into deep neural networks suitable for graph-structured (re-

lational) data, called graph neural networks (GNNs). In this work, each domain relation

is treated as a hyperedge. The proposed method of vertex-enrichment allows enrich-

ing the feature associated with every vertex of the graph that appears in a hyperedge.

Here we will show that the vertex-enrichment technique results in simplified inclusion of

domain-knowledge into GNNs.

In Chapter 5, we propose a general technique for the inclusion of multi-relational

domain-knowledge into GNNs, using the method of inverse entailment [Mug95] devel-

oped within the area of Inductive Logic Programming (ILP). ILP constructs a bottom-

clause (the most specific explanation about a data instance) from data and background

knowledge. Here, we construct an equivalent graph representation corresponding to a

bottom-clause, and show how a GNN can operate on this graph. The technique proposed

here provides a framework for the complete inclusion of relational information into a

GNN.

In Chapter 6 we extend our study in Chapter 5 to construct a deep generative model

for molecule generation. That is, we propose a modular system that uses two deep gen-

erative models and a GNN-based discriminator constructed in Chapter 5. The technique

proposed here allows indirect inclusion of relational information in the domain-knowledge

into the conditional generation of novel molecules.

In all the chapters, we would aim to investigate our primary hypothesis that the

inclusion of domain-knowledge improves the performance of deep neural networks. To

this end, our investigation would be in the broad of drug discovery. Specifically, we

conduct large-scale empirical testing of the resulting DNN models in the Chapter 3 to

Chapter 5, using nearly 75 datasets that consists of over 200,000 relational data instances

and with domain-knowledge containing about 100 relations. In Chapter 6, we evaluate our

constructed system for conditional generation of novel small molecules to act as inhibitors

for a well-studied target protein. We outline the main findings of this dissertation in

Chapter 7 and provide details of future research directions that could spin out from our

present work.

Some additional details concerning the technical background, such as DNNs, ILP, are

provided in Appendix A. In Appendix B we provide details of the additional experiments

that are conducted to evaluate some secondary research questions in our chapters.

8

Chapter 2

Literature Review∗

In this chapter, we present a survey of techniques in which existing domain-knowledge is

included when constructing models with deep neural networks.

In this survey, we restrict the studies on the incorporation of domain-knowledge into

neural networks with one or more hidden layers. If the domain-knowledge expressed in a

symbolic form (for example, logical relations that are known to hold in the domain), then

the broad area of hybrid neural-symbolic systems (see for example, [GBG12, RDMM20])

is clearly relevant to the material in this chapter. However, the motivation driving the

development of hybrid systems is much broader than this chapter, being concerned with

general-purpose neural-based architectures for logical representation and inference. Here

our goals are more modest: we are looking at the inclusion of problem-specific information

into machine-learning models of a kind that will be described shortly. We refer the reader

to [BGB+17] for reviews of work in the broader area of neural-symbolic modelling. More

directly related to the survey in this chapter is the work on “informed machine learning”,

reviewed in [vRMB+21]. We share with this work the interest in prior knowledge as an

important source of information that can augment existing data. However, the goals of

that paper are more ambitious than here. It aims to identify categories of prior knowledge,

using as dimensions: the source of the knowledge, its representation, and its point of use in

a machine-learning algorithm. In this survey, we are only concerned with some of these

categories. Specifically, in terms of the categories in [vRMB+21], we are interested in

implicit or explicit sources of domain-knowledge, represented either as logical or numeric

constraints and used in the model-construction stage by DNNs. Informal examples of

what we mean by logical and numerical constraints are shown in Figure 2.1. In general,

we will assume logical constraints can, in principle, be represented as statements in

propositional logic or predicate logic. Numerical constraints will be representable, in

∗The content of this chapter is based on the following:
T. Dash, S. Chitlangia, A. Ahuja, A. Srinivasan, “A review of some techniques for inclusion of domain-
knowledge into deep neural networks”, Nature Scientific Reports, 2022; https://doi.org/10.1038/
s41598-021-04590-0.

9

https://doi.org/10.1038/s41598-021-04590-0
https://doi.org/10.1038/s41598-021-04590-0

principle, as terms in an objective function being minimised (or maximised), or prior

distributions on models. We believe this covers a wide range of potential applications,

including those concerned with scientific discovery.

For inhibiting this protein: The model should follow that:

The presence of a peroxide p(y = 1|x) ≥ 0.9

bridge is relevant. p(y = 0|x) ≤ 0.1

The target site is Initial weights should be

at most 20Å. 3n− 2.3 [TSN90]

(a) (b)

Figure 2.1: Informal descriptions of (a) logical; and (b) numerical constraints.

2.1 Focus of this Review

We adhere to the following informal specification for constructing a deep neural network:

given some data D, a structure and parameters of a deep neural network (denoted by π

and θ, respectively), a learner L attempts to construct a neural network model M that

minimises some loss function L. Figure 2.2 shows a diagrammatic representation. Note

that: (a) we do not describe how the learner L constructs a model M given the inputs.

But, it would be normal for the learner to optimise the loss L by performing an iterative

estimation of the parameters θ, given the structure π; and (b) we are not concerned with

how the constructed deep model M will be used. However, it suffices to say that when

used, the model M would be given one or more data-instances encoded in the same way

as was provided for model-construction.

Figure 2.2: Construction of a deep neural network model M from data (D) using a
learner (L). We use π to denote the structure (organisation of various layers, their
interconnections, etc.) and θ to denote the parameters (synaptic weights) of the deep
neural network. L denotes the loss function (for example, cross-entropy loss in case of
classification).

In the literature, domain-knowledge–also called background knowledge–does not ap-

pear to have an accepted definition, other than that, it refers to information about the

10

problem. This information can be in the form of relevant features, concepts, taxonomies,

rules-of-thumb, logical constraints, probability distributions, mathematical distributions,

causal connections and so on. In this chapter, we use the term “domain-knowledge” to

refer to problem-specific information that can directly be translated into alterations to

the principal inputs of Figure 2.2. That is, by domain-knowledge we will mean problem-

specific information that can change: (1) The input data to a deep neural network; (2)

The loss-function used; and (3) The model (that is, the structure or parameters) of the

deep neural network. In a sense, this progression reflects a graded increase in the complex-

ity of changes involved. Figure 2.3 tabulates the principal implications of this position

for commonly-used deep learning architectures.

The rest of the chapter is divided into multiple sections: We start by discussing some

existing techniques for inclusion of domain-knowledge by augmenting or transforming

inputs. Then we focus on some popular loss functions that are used to drive the inclusion

of domain-knowledge during training of a deep neural network. We describe various biases

on model parameters and changes to the structure of deep neural networks. In summary,

we outline some major challenges related to the inclusion of domain-knowledge in the

ways we describe and where the contributions of this lie in this area of research.

2.2 Transforming the Input Data

One of the prominent approaches to incorporate domain-knowledge into a deep neural

network is by changing inputs to the network. Here, the domain-knowledge is primarily

in symbolic form. The idea is simple: If a data instance could be described using a set

of attributes that not only includes the raw feature-values but also includes more details

from the domain, then a standard deep neural network could then be constructed from

these new features. A simple block diagram in Figure 2.4 shows how domain-knowledge

is introduced into the network via changes in inputs. In this survey, we discuss broadly

two different ways of doing this: (a) using relational features, mostly constructed by a

method called propositionalisation [LDG91] using another machine learning system (for

example, Inductive Logic Programming) that deals with data and background knowledge;

(b) without propositionalisation.

2.2.1 Propositionalisation

The pre-eminent form of symbolic machine learning based on the use of relations in first-

order logic is Inductive Logic Programming (ILP) [Mug91], which has an explicit role for

domain-knowledge being incorporated into learning. The simplest use of ILP [Mug91]

to incorporate n-ary relations in domain-knowledge into a neural network relies on tech-

niques that automatically “flatten” the domain-knowledge into a set of domain-specific

11

A
rc
h
.

D
o
m
a
in
-K

n
o
w
le
d
g
e
E
ff
e
ct

T
ra

n
sf
o
rm

In
p
u
t
D
a
ta

T
ra

n
sf
o
rm

L
o
ss

F
u
n
ct
io
n

T
ra

n
sf
o
rm

M
o
d
e
l

M
L

P
R

ef
or

m
u

la
te

fe
at

u
re

-r
ep

re
se

n
ta

ti
on

(F
or

al
l

ar
ch

it
ec

tu
re

s)

R
ef

or
m

u
la

te
re

gu
la

ri
sa

ti
on

te
rm

;

A
d

d
it

io
n

of
sy

n
ta

ct
ic

or
se

m
an

ti
c

co
n

st
ra

in
ts

w
it

h
as

so
ci

at
ed

p
en

al
ti

es
;

D
iff

er
en

ti
al

co
st

s
of

d
ec

is
io

n
s

C
h

an
ge

s
in

la
ye

rs
,

h
id

d
en

u
n

it
s

C
N

N
R

ef
or

m
u

la
te

sp
at

ia
l-

re
p

re
se

n
ta

ti
on

A
s

w
it

h
M

L
P

s,
p

lu
s

ch
an

ge
s

to
co

n
n

ec
ti

on
s

b
et

w
ee

n
u

n
it

s;

ch
an

ge
s

co
n
vo

lu
ti

on
fi

lt
er

s

R
N

N
,

T
ra

n
sf

or
m

er

R
ef

or
m

u
la

te

se
q
u

en
ce

-r
ep

re
se

n
ta

ti
on

A
s

w
it

h
M

L
P

s,
p

lu
s

p
os

si
b

le
ch

an
ge

s

to
at

te
n
ti

on
-m

ec
h

an
is

m

G
N

N
R

ef
or

m
u

la
te

gr
ap

h
-r

ep
re

se
n
ta

ti
on

A
s

w
it

h
M

L
P

s,
p

lu
s

ch
an

ge
s

to
gr

ap
h

-c
on

vo
lu

ti
on

F
ig

u
re

2.
3:

S
om

e
im

p
li

ca
ti

on
s

of
u

si
n

g
d

om
ai

n
-k

n
ow

le
d

ge
fo

r
co

m
m

on
ly

-u
se

d
d

ee
p

n
eu

ra
l

n
et

w
or

k
ar

ch
it

ec
tu

re
s.

H
er

e
M

L
P

st
an

d
s

fo
r

M
u

lt
il

ay
er

P
er

ce
p

tr
on

,
C

N
N

st
an

d
s

fo
r

C
on

vo
lu

ti
on

al
N

eu
ra

l
N

et
w

or
k
,

R
N

N
st

an
d

s
fo

r
R

ec
u

rr
en

u
ra

l
N

et
w

or
k

an
d

G
N

N
st

an
d

s
fo

r
G

ra
p

h
N

eu
ra

l
N

et
w

or
k
.

M
L

P
s,

C
N

N
s

an
d

R
N

N
s

ar
e

n
ow

co
m

m
on

p
la

ce
ar

ch
it

ec
tu

re
s

fo
r

d
ee

p
n

eu
ra

l
n

et
w

or
k
s

an
d

d
et

ai
le

d
d

es
cr

ip
ti

on
s

ca
n

b
e

fo
u

n
d

in
an

y
st

an
d

ar
d

te
x
tb

o
ok

(f
or

ex
am

p
le

,
[B

G
C

17
,

Z
L

L
S

21
])

.
G

N
N

s
ar

e
in

cr
ea

si
n

gl
y

th
e

D
N

N
m

o
d

el
of

ch
oi

ce
fo

r
d

ea
li

n
g

w
it

h
gr

ap
h

-b
as

ed
d

at
a,

an
d

a
go

o
d

d
es

cr
ip

ti
on

ca
n

b
e

fo
u

n
d

in
[H

am
20

].
In

th
is

d
is

se
rt

at
io

n
,

w
e

w
il

l
b

e
m

ai
n

ly
co

n
ce

rn
ed

w
it

h
M

L
P

s
an

d
G

N
N

s:
th

e
d

et
ai

ls
re

q
u

ir
ed

ar
e

in
A

p
p

en
d

ix
A

.

12

Figure 2.4: Introducing background knowledge into deep neural network by transforming
data. T is a transformation block that takes input data D, background knowledge (BK)
and outputs transformed data D′ that is then used to construct a deep model using a
learner L.

relational features. Although not all DNNs require data to be a set of feature-vectors,

this form of data representation is long-standing and still sufficiently prevalent. In logical

terms, we categorise feature-based representations as being encodings in propositional

logic. The reader would point out, correctly, that feature-values may not be Boolean.

This is correct, but we can represent non-Boolean features by Boolean-valued propositions

(for example, a real-valued feature f with value 4.2 would be represented by a correspond-

ing Boolean feature f ′ that has the value 1 if f = 4.2 and 0 otherwise). With the caveat

of this rephrasing, it has, of course, been possible to provide domain-knowledge to neural

networks by employing domain-specific features devised by an expert. However, we fo-

cus here on ways in which domain-knowledge encoded as rules in propositional logic and

first-order logic has been used to construct the input features for a deep neural network.

Techniques for automatic construction of Boolean-valued features from relational domain-

knowledge have a long history in the field of ILP [Md94, MDRP+12, CDM20], originating

from the LINUS [LDG91]. Often called propositionalisation, the approach involves the

construction of features that identify the conditions under which they take on the value 1

(or 0). For example, given (amongst other things) the definition of benzene rings and of

fused rings, an ILP-based propositionalisation may construct the Boolean-valued feature

that has the value 1 if a molecule has 3 fused benzene rings, and 0 otherwise. The values

of such Boolean-valued features allow us to represent a data instance (like a molecule) as

a Boolean-valued feature-vector, which can then be provided to a neural network. There

is a long history of propositionalisation: see [KLF01] for a review of some of early use of

this technique, and [LSR20, VSBV17] who examine the links between propositionalisation

and modern-day use of embeddings in deep neural networks. More clearly, the authors

examine that both propositionalisation and embedding approaches aim at transforming

data into tabular data format while they are being used in different problem settings

and contexts. One recent example of embedding is demonstrated in [GRS+21] where the

authors use different text-embedding approaches such as sentence encoder [CYK+18] and

GPT2 [RWC+19] to transform textual domain-knowledge into embedding vectors.

13

A direct application of propositionalisation, demonstrating its utility for deep neural

networks, has been its use in Deep Relational Machines (DRMs: [Lod13]). A DRM is a

deep fully-connected neural network with Boolean-valued inputs obtained from proposi-

tionalisation by an ILP engine.

The idea of propositionalisation also forms the foundation for a method known as ‘Bot-

tom Clause Propositionalisation (BCP)’ to propositionalise the literals of a most-specific

clause, or “bottom-clause” in ILP. Given a data instance, the bottom-clause is the most-

specific first-order clause that entails the data instance, given some domain-knowledge.

Loosely speaking, the most-specific clause can be thought of “enriching” the data in-

stance with all domain relations that are true, given the data instance. The construction

of such most-specific clauses and their subsequent use in ILP was introduced in [Mug95].

CILP++ [FZG14] uses bottom-clauses for data instances to construct feature-vectors

for neural networks. This is an extension to CIL2P in which the neural network uses

recurrent connections to enforce the background knowledge during the training [GZ99].

Propositionalisation has conceptual and practical limitations. Conceptually, there is

no variable-sharing between two or more first-order logic features. That is, all useful com-

positions have to be pre-specified. Practically, this makes the space of possible features

extremely large: this has meant that the feature-selection has usually been done sepa-

rately from the construction of the neural network. In this context, another work that

does not employ either propositionalisation or network augmentation considers a com-

bination of symbolic knowledge represented in first-order logic with matrix factorization

techniques [RSR15]. This exploits dependencies between textual patterns to generalise

to new relations.

Recent work on neural-guided program synthesis also explicitly includes domain-

specific relations. Here programs attempt to construct automatically compositions of

functional primitives. The primitives are represented as fragments of functional pro-

grams that are expected to be relevant. An example of neural-guided program synthesis

that uses such domain-primitives is DreamCoder [EMM+18, EWN+20]. DreamCoder

receives as inputs the partial specification of a function in the form of some inputs–

output pairs, and a set of low-level primitives represented in a declarative language.

Higher-level domain-concepts are then abduced as compositions of these primitives via a

neurally-guided search procedure based on a version of the Bayesian “wake-sleep” algo-

rithm [HDFN95]. The deep neural networks use a (multi-hot) Boolean-vector encoding

to represent functional compositions (a binary digit is associated with each primitive

function, and takes the value 1 if and only if the primitive is used in the composite

function).

There are some methods that do not use an explicit propositionalisation step, nev-

ertheless, amount to re-formulating the input feature representation. In the area of

“domain-adaptation” [BDBC+10], “source” problems act as a proxy for domain-knowledge

14

for a related “target” problem.1 There is a form of domain-adaptation in which the tar-

get’s input representation is changed based on the source model. In [DQW+21], for

example, a feature-encoder ensures that the feature representation for the target domain

that is the same as the one used for the source.

2.2.2 Binary and n-ary Relations

An influential form of representing relational domain-knowledge takes the form knowledge

graph, which are labelled graphs, with vertices representing entities and edges representing

binary relations between entities. A knowledge graph provides a structured representation

for knowledge that is accessible to both humans and machines [PSS20]. Knowledge

graphs have been used successfully in variety of problems arising in information processing

domains such as search, recommendation, summarisation [SPG19]. Sometimes the formal

semantics of knowledge graphs such as domain ontologies are used as sources for external

domain-knowledge [YLD+21]. We refer the reader to [HBC+20] to a comprehensive survey

of this form of representation for domain-knowledge.

Incorporation of the information in a knowledge-graph into deep neural models–

termed “knowledge-infused learning”–is described in [KGS19, SGKW19]. This aims to

incorporate binary relations contained in application-independent sources (like DBPedia,

Yago, WikiData) and application-specific sources (like SNOMED-CT, DataMed). The

work examines techniques for incorporating relations at various layers of deep neural net-

works (the authors categorise these as “shallow”, “semi-deep” and “deep” infusion). In

the case of shallow infusion, both the external knowledge and the method of knowledge

infusion are shallow, utilising syntactic and lexical knowledge in word embedding mod-

els. In semi-deep infusion, external knowledge is involved through attention mechanisms

or learnable knowledge constraints acting as a sentinel to guide model learning. Deep

infusion employs a stratified representation of knowledge representing different levels of

abstractions in different layers of a deep learning model to transfer the knowledge that

aligns with the corresponding layer in the learning process. Fusing the information in a

knowledge-graph in this way into various level of hidden representations in a deep neu-

ral network could also allow quantitative and qualitative assessment of its functioning,

leading to knowledge-infused interpretability [GFS21].

There have been some recent advances in introducing external domain-knowledge

into deep sequence models. For instance, in [YLD+21], the authors incorporate domain-

specific knowledge into the popular deep learning framework, BERT [DCLT19] via a

1Superficially, this is also the setting underlying transfer learning. However, the principal difference is
that source and target problems are closely related to domain-adaptation, but this need not be the case
with transfer learning. Transfer-learning also usually involves changes in both model-parameters and
model-structure. Domain-adaptation does not change the model-structure: we consider these points in
a later section.

15

declarative knowledge source like drug-abuse ontology. The model constructed here,

called Gated-K-BERT, is used jointly for extracting entities and their relationship from

tweets by introducing the domain-knowledge using an entity position-aware module into

the primary BERT architecture. The experimental results demonstrate that incorporat-

ing domain-knowledge in this manner leads to better relation extraction as compared to

the state-of-the-art. This work could fall within the category of semi-deep infusion as

described in [KGS19]. [YZQ+19], in their study on learning from electronic health records

show that the adjacency information in a medical knowledge graph can be used to model

the attention mechanism in an LSTM-based RNN with attention. Whenever the RNN

gets an entity (a medical event) as an input, the corresponding sub-graph in the medical

knowledge graph (consisting of relations such as causes and is-caused-by) is then used to

compute an attention score. This method of incorporating the medical relations into the

RNN falls under the category of semi-deep knowledge infusion. While the above methods

use the relational knowledge from a knowledge-graph by altering or adding an attention

module within the deep sequence model, a recent method called KRISP [MCP+21] in-

troduces such external knowledge at the output (prediction) layer of BERT. This work

could be considered under the category of shallow infusion of domain-knowledge as char-

acterised by [KGS19].

Knowledge graphs can be used directly by specialised deep neural network models

that can handle graph-based data as input (graph neural networks, or GNNs). The com-

putational machinery available in GNN then aggregates and combines the information

available in the knowledge graph (an example of this kind of aggregation and pooling of

relational information is in [SKB+18]). The final collected information from this computa-

tion could be used for further predictions. Some recent works are in [PKD+19, WZX+19],

where a GNN is used for estimation of node importance in a knowledge-graph. The intu-

ition is that the nodes (in a problem involving recommender systems, as in [WZX+19], a

node represents an entity) in the knowledge-graph can be represented with an aggregated

neighbourhood information with bias while adopting the central idea of aggregate-and-

combine in GNNs. The idea of encoding a knowledge graph directly for a GNN is also

used in Knowledge-Based Recommender Dialog (KBRD) framework developed for rec-

ommender systems [CLZ+19]. In this work, the authors treat an external knowledge

graph, such as DBpedia [LIJ+15], as a source of domain-knowledge allowing entities to

be enriched with this knowledge. The authors found that the introduction of such knowl-

edge in the form of a knowledge-graph can strengthen the recommendation performance

significantly and can enhance the consistency and diversity of the generated dialogues.

In KRISP [MCP+21], a knowledge-graph is treated as an input for a GNN where each

node of the graph corresponds to one specific domain-concept in the knowledge graph.

This idea is a consequence of how a GNN operates: it can form more complex domain-

concepts by propagating information of the basic domain-concepts along the edges in

16

the knowledge-graph. Further, the authors allow the network parameters to be shared

across the domain-concepts with a hope to achieve better generalisation. We note that

while knowledge-graphs provide an explicit representation of domain-knowledge in the

data, some problems contain domain-knowledge implicitly through an inherent topolog-

ical structure (like a communication network). Clearly, GNNs can accommodate such

topological structure just in the same manner as any other form of graph-based relations

(see for example: [ZWQ+19]).

2.3 Transforming the Loss Function

One standard way of incorporating domain-knowledge into a deep neural network is by

introducing “penalty” terms into the loss (or utility) function that reflect constraints im-

posed by domain-knowledge. The optimiser used for model construction then minimises

the overall loss that includes the penalty terms. Figure 2.5 shows a simple block diagram

where a new loss term is introduced based on the background knowledge. We distinguish

two kinds of domain constraints–syntactic and semantic–and describe how these have

been used to introduce penalty terms into the loss function.

Figure 2.5: Introducing background knowledge into deep neural network by transforming
the loss function L. T block takes an input loss L and outputs a new loss function L′

by transforming (augmenting or modifying) L based on background knowledge (BK).
The learner L then constructs a deep model using the original data D and the new loss
function L′.

2.3.1 Syntactic Loss

The usual mechanism for introducing syntactic constraints is to introduce one or more

regularisation terms into the loss function. The most common form of regularisation

introduces penalties based on model complexity (number of hidden layers or number of

parameters and so on: see, for example, [KGC17]).

A more elaborate form of syntactic constraints involves the concept of embeddings .

Embeddings refer to the relatively low-dimensional learned continuous vector represen-

17

tations of discrete variables. Penalty terms based on “regularising embeddings” are used

to encode syntactic constraints on the complexity of embeddings. [Fu95] was an early

work in this direction, in which the authors proposed a strategy to establish constraints

by designating each node in a Hopfield Net to represent a concept and edges to rep-

resent their relationships and learn these nets by finding the solution which maximises

the greatest number of these constraints. [RBSR14] was perhaps the first method of

regularising embeddings from declarative knowledge encoded in first-order logic. The

proposal here is for mapping between logical statements and their embeddings, and log-

ical inferences and matrix operations. That is, the model behaves as if it is following a

complex first-order reasoning process, but operates at the level of simple vectors and ma-

trix representations. [RSR15] extended this to regularisation by addition of differentiable

loss terms to the objective-based on propositionalisation of each first-order predicate.

Guo et al. [GWW+16] proposed a joint model, called KALE, which embeds facts from

knowledge-graphs and logical rules, simultaneously. Here, the facts are represented as

ground atoms with a calculated truth value in [0, 1] suggesting how likely the fact holds.

Logical rules (in grounded form) are then interpreted as complex formulae constructed

by combining ground atoms with logical connectives, which are then modelled by fuzzy

t-norm operators [Háj13]. The truth value that results from this operation is nothing but

a composition of the constituent ground atoms, allowing the facts from the knowledge

graph to be incorporated into the model.

[LS20] develop a method to constraint individual neural layers using soft logic based

on massively available declarative rules in ConceptNet. [HBZ+18] incorporates first-order

logic into low-dimensional spaces by embedding graphs nodes and represents logical oper-

ators as learned geometric relations in the space. [DRR16] proposed ordering of embed-

ding space based on rules mined from WordNet and found it to better prior knowledge

and generalisation capabilities using these relational embeddings. [LFJ+18] show that

domain-based regularisation in loss function can also help in constructing deep neural

networks with less amount of data in prediction problems concerned with cloud comput-

ing. In [TA18], a knowledge-based distant regularisation framework was proposed that

utilises the distance information encoded in a knowledge-graph. It defines prior distri-

butions of model parameters using knowledge-graph embeddings. They show that this

results in an optimisation problem for a regularised factor analysis method.

2.3.2 Semantic Loss

Penalty terms can also be introduced on the extent to which the model’s prediction

satisfies semantic domain constraints. For example, the domain may impose specific

restrictions on the prediction (“output prediction must be in the range [3, 6]”). One way

in which such information is provided is in the form of domain-constraints. Penalty terms

18

are then introduced based on the number and importance of such constraints that are

violated.

A recent work that is based on the loss function is in [XZF+18]. Here the authors

propose a semantic loss that signifies how well the outputs of the deep neural network

matches some given constraints encoded as propositional rules. The general intuition

behind this idea is that the semantic loss is proportional to a negative logarithm of

the probability of generating a state that satisfies the constraint when sampling values

according to some probability distribution. This kind of loss function is particularly

useful for semi-supervised learning as these losses behave like self-information and are

not constructed using explicit labels and can thus utilize unlabelled data. In [THM21], a

compositional framework called NeuroLog is proposed that can allow plug-and-play of a

neural module and a symbolic module. The domain-constraints are provided to the neural

module in an abductive manner. That is, the predictions (or the outputs) from the neural

module are used as input for the symbolic module that encodes some logical constraints

in first-order logic. If the predictions from the neural module were all correct, then the

deduction from the symbolic module would match some desired output; otherwise, the

symbolic module will provide an abductive feedback to the neural module via a semantic

loss. The loss function dictates how close–semantically–are the outputs of the neural net

to the formula found via abduction. The neural module is then trained to reduce this

semantic loss.

[HML+16] proposed a framework to incorporate first-order logic rules with the help of

an iterative distillation procedure that transfers the structured information of logic rules

into the weights of neural networks. This is done via a modification to the knowledge-

distillation loss proposed by Hinton et al. [HVD15]. The authors show that taking

this loss-based route of integrating rule-based domain-knowledge allows the flexibility

of choosing a deep neural network architecture suitable for the intended task.

In [FBDC+19], authors construct a system for training a neural network with domain-

knowledge encoded as logical constraints. Here the available constraints are transferred

to a loss function. Specifically, each individual logic operation (such as negation, and, or,

equality etc.) is translated to a loss term. The final formulation results in an optimisation

problem. The authors extract constraints on inputs that capture certain kinds of convex

sets and use them as optimisation constraints to make the optimisation tractable. In the

developed system, it is also possible to pose queries on the model to find inputs that

satisfy a set of constraints. In a similar line, [MIM+19] proposed domain-adapted neural

network (DANN) that works with a balanced loss function at the intersection of models

based on purely domain-based loss or purely inductive loss. Specifically, they introduce

a domain-loss term that requires a functional form of approximation and monotonicity

constraints. Without detailing much on the underlying equations, it suffices to say that

formulating the domain loss using these constraints enforces the model to learn not only

19

from training data but also in accordance with certain accepted domain rules.

Another popular approach that treats domain knowledge as ‘domain constraints’ is

semantic based regularisation [DGS17, DRG17]. It builds standard multilayered neural

networks (e.g. MLP) with kernel machines at the input layer that deal with continuous-

valued features. The outputs of the kernel machines are then input to the higher layers

implementing a fuzzy generalisation of the domain constraints that are represented in

first-order logic. The regularisation term consisting of a sum of fuzzy generalisation of

constraints using t-norm operations in the cumulative loss then penalises each violation

of the constraints during the training of the deep neural network. [SLM20] inject domain-

knowledge at training time via an approach that combines semantic based regularisation

and constraint programming [RVBW06]. This approach uses the concept of ‘propagators’,

which is inherent in constraint programming to identify infeasible assignments of variables

to values in the domain of the variables. The role of semantic-based regularisation is

to then penalise these infeasible assignments weighted by a penalty parameter. This

is an example of constraints on inputs. In a similar line, [LZZ21] introduce domain-

knowledge into a deep LSTM-based RNN at three different levels: constraining the inputs

by designing a filtering module based on the domain-specific rules, constraining the output

by enforcing an output range, and also by introducing a penalty term in the loss function.

A library for integrating symbolic domain-knowledge with deep neural networks was

introduced recently in [FGU+21]. It provides some effective ways of specifying domain-

knowledge, albeit restricted to (binary) hierarchical concepts only, for problems arising

in the domain of natural language processing and some subset of computer vision. The

principle of integration involves constraint satisfaction using a primal-dual formulation

of the optimisation problem. That is: the goal is to satisfy the maximum number of

domain constraints while also minimising the training loss, an approach similar to the

idea proposed in [FBDC+19, MIM+19, SLM20].

While adding a domain-based constraint term to the loss function may seem appealing,

there are a few challenges. One challenge that is pointed out in a recent study [HKBG21]

is that incorporating domain-knowledge in this manner (that is: adding a domain-based

loss to the standard problem-specific loss) may not always be suitable while dealing

with safety-critical domains where 100% constraint satisfaction is desirable. One way

to guarantee 100% domain-constraint satisfaction is by directly augmenting the output

layer with some transformations and then deriving a new loss function due to these

transformations. These transformations are such that they guarantee the output of the

network to satisfy the domain constraints. In this study, called MultiplexNet [HKBG21],

the domain-knowledge is represented as a logical formula in disjunctive normal form

(DNF) Here the output (or prediction) layer of a deep neural network is viewed as a

multiplexor in a logical circuit that permits branching in logic. That is, the output of

the network always satisfies one of the constraints specified in the domain-knowledge

20

(disjunctive formula).

The other form of semantic loss could be one that involves a human for post-hoc

evaluation of a deep model constructed from a set of first-order rules. In this line, [HH21]

proposed an analogical reasoning system intended for discovering rules by training a

sequence-to-sequence model using a training set of rules represented in first-order logic.

Here the role of domain-knowledge comes post training of the deep sequence model; that

is, an evaluator (a human expert) tests each discovered rule from the model by unifying

them against the (domain) knowledge base. The domain-knowledge here serves as some

kind of a validation set where if the ratio of successful rule unification crosses a certain

threshold, then the set of discovered rules are accepted.

2.4 Transforming the Model

Over the years, many studies have shown that domain-knowledge can be incorporated

into a deep neural network by introducing constraints on the model parameters (weights)

or by making a design choice of its structure. Figure 2.6 shows a simple block diagram

showing domain-knowledge incorporation at the design stage of the deep neural network.

(a) Transforming structure (b) Transforming parameters

Figure 2.6: Introducing background knowledge into deep neural network by transforming
the model (structure and parameter). In (a), the transformation block T takes a input
structure of a model π and outputs a transformed structure π′ based on background
knowledge (BK). In (b), the transformation block T takes a set of parameters θ of a
model and outputs a transformed set of parameters π′ based on background knowledge
(BK).

2.4.1 Constraints on Parameters

In a Bayesian formulation, there is an explicit mechanism for the inclusion of domain-

knowledge through the use of priors. The regularisation terms in loss-functions, for

21

example, can be seen as an encoding of such prior information, usually on the network’s

structure. Priors can also be introduced on the parameters (weights) of a network. Ex-

plicitly, these would take the form of a prior distribution over the values of the weights

in the network. The priors on networks and network weights represent our expectations

about networks before receiving any data, and correspond to penalty terms or regularis-

ers. Buntine and Weigend [BW91] extensively study how Bayesian theory can be highly

relevant to the problem of training feedforward neural networks. This work is explic-

itly concerned with choosing an appropriate network structure and size based on prior

domain-knowledge and with selecting a prior for the weights.

The work by [Nea95] on Bayesian learning for neural networks also showed how

domain-knowledge could help build a prior probability distribution over neural network

parameters. In this, the shown priors allow networks to be “self-regularised” to not

overfit even when the complexity of the neural network is increased. In a similar spirit,

[KT07] showed how prior domain knowledge could be used to define ‘meta-features’ that

can aid in defining the prior distribution of weights. These meta-features are additional

information about each of the features in the available data. For instance, for an image

recognition task, the meta-feature could be the relative position of a pixel (x, y) in the

image. This meta information can be used to construct a prior over the weights for the

original features.

There have been some studies that involve representing domain-knowledge as quali-

tative statements, called monotonicity constraints [ARD05]. These studies have focused

primarily on estimating parameters for Bayesian networks [YN13]. Since monotonic con-

straints are intuitive to the domain-experts in many real-world scenarios, there have been

decent attempts in constructing monotonic deep neural networks. The main idea is again

the same as discussed before: Constraining the parameters of the deep neural network

to be non-negative by imposing a non-negative activation function at the internal neu-

rons [MZB+21, RS22].

Transfer Learning

Transfer Learning is a mechanism to introduce priors on weights when data is scarce for a

problem (usually called the “target” domain). Transfer learning relies on data availability

for a problem similar to the target domain (usually called the “source” domain). From the

position taken in this chapter, domain-knowledge for transfer learning is used to change

the structure or the parameter values (or both) for a model for the target problem. The

nature of this domain-knowledge can be seen prior distributions on the structure and/or

parameter-values (weights) of models for the target problem. The prior distributions for

the target model are obtained from the models constructed for the source problem.

In practice, transfer learning from a source domain to a target domain usually in-

22

volves a transfer of weights from models constructed for the source domain to the net-

work in the target domain. This has been shown to boost performance significantly. From

the Bayesian perspective, transfer learning allows the construction of the prior over the

weights of a neural network for the target domain based on the posterior constructed in

the source domain. Transfer learning is not limited by the kind of task (such as classi-

fication, regression, etc.) but rather by the availability of related problems. Language

models are some of the very successful examples of the use of transfer learning, where

the models are initially learnt on a huge corpus of data and fine-tuned for other more

specialised tasks. [ZQD+20] provides an in-depth review of some of the mechanisms and

the strategies of transfer learning. Transfer learning need not be restricted to deep neural

networks only: in a recent study, [LWM18] proposes a model that transfers knowledge

from a deep neural network to a decision tree using knowledge distillation framework.

The symbolic knowledge encoded in the decision tree could further be utilised for a va-

riety of tasks. A recently available learning technique that is closely related to transfer

learning is Transformational Machine Learning (TML [OOD+21]), albeit with a major

difference: While in transfer learning the parameters of a trained model built for one

problem serve as priors for a (related) target problem, in TML, the predictions of a (or a

set of) model(s) serve as input features for a related target problem. This technique allows

indirect inclusion of knowledge from one or multiple problems into a machine learning

(including deep neural network) model.

A subcategory of transfer learning is one in which the problem (or task) remains the

same, but there is a change in the distribution over the input data from the source and the

target. This form of learning is viewed as an instance of domain-adaptation [BDBC+10].

Similar to transfer learning, the knowledge is transferred from a source domain to a

target domain in the form of a prior distribution over the model parameters. This form

of domain-adaptation uses the same model structure as the source, along with an initial

set of parameter values obtained from the source model. The parameter values are then

fine-tuned using labelled and unlabelled data from the target data [THDS15]. An example

of this kind of learning is in [DSW+20] where a BERT model is fine-tuned with data from

multiple domains. There are some recent surveys along these lines: [WD18, RP20].

2.4.2 Specialised Structures

DNN-based methods arguably work best if the domain-knowledge is used to inspire their

architecture choices [BGKP21]. There are reports on incorporating first-order logic con-

structs into the structure of the network. This allows neural networks to operate directly

on the logical sentences comprising domain-knowledge.

Domain-knowledge encoded as a set of propositional rules is used to constrain the

structure of the neural network. Parameter-learning (updating of the network weights)

23

then proceeds as normal, using the structure. The result could be thought of as learning

weighted forms of the antecedents present in the rules. The most popular and oldest

work along this line is Knowledge-Based Artificial Neural Network (KBANN) [TSN90]

that incorporates knowledge into neural networks. In KBANN, the domain-knowledge is

represented as a set of hierarchically structured propositional rules that directly deter-

mines a fixed topological structure of a neural network [TS94]. KBANN was successful in

many real-world applications; but, its representational power was bounded by pre-existing

set of rules which restricted it to refine these existing rules rather than discovering new

rules. A similar study is KBCNN [Fu93], which first identifies and links domain attributes

and concepts consistent with initial domain-knowledge. Further, KBCNN introduces ad-

ditional hidden units into the network, and most importantly, it allowed decoding of the

learned rules from the network in symbolic form. However, both KBANN and KBCNN

were not appropriate for learning new rules because of the way the initial structure was

constructed using the initial domain-knowledge base.

Some of the limitations described above could be overcome with the proposal of a

hybrid system by Fletcher and Obradovic [FO93]. The system was able to learn a neural

network structure that could construct new rules from an initial set of rules. Here, the

domain-knowledge is transformed into an initial network through an extended version

of KBANN’s symbolic knowledge encoding. It performed incremental hidden unit gen-

eration, thereby allowing construction or extension of the initial rule-base. In a similar

manner, there was a proposal for using Cascade ARTMAP [Tan97] which could not only

construct a neural network structure from rules but also perform explicit cascading of rules

and multistep inferencing. It was found that the rules extracted from Cascade ARTMAP

are more accurate and much cleaner than the rules extracted from KBANN [TS93].

In the late 1990s, Garcez and Zaverucha proposed a massively parallel computa-

tional model called CIL2P based on feedforward neural network that integrates inductive

learning from examples and domain-knowledge, expressed as a propositional logic pro-

gram [GZ99]. A translation algorithm generates a neural network. Unlike KBANN, the

approach uses the notion of “bipolar semi-linear” neurons. This allows the proof of a form

of correctness, showing the existence of a neural-network structure that can compute the

logical consequences of the domain-knowledge. The output of such a network, when com-

bined into subsequent processing naturally incorporates the intended interpretation of

the domain predicates. The authors extend this to the use of first-order logic programs:

we have already considered this in section 2.2.

A recent proposal called LENSR [XXK+19] focuses on embedding symbolic knowledge

expressed as logical rules. It considers two languages of representation: Conjunctive

Normal Form (CNF) and decision-Deterministic Decomposable Negation Normal form

(d-DNNF), which can naturally be represented as graph structures. The graph structures

can be provided to a graph neural network (GNN) to learn an embedding suitable for

24

further task-specific implementations.

Somewhat in a similar vein to the work by [GZ99], the work reported in [XZF+18]

considers as a set of propositional statements representing domain constraints. A deep

neural network is then trained to find satisfying assignments for the constraints. Again,

once such a network is constructed, it can clearly be used in subsequent processing,

capturing the effect of the domain constraints. The network is trained using a semantic

loss that we have described in subsection 2.3.2.

In [LS20], it is proposed to augment a language model that uses a deep net architecture

with additional statements in first-order logic. Thus, given domain-knowledge encoded

as first-order relations, connections are introduced into the network based on the logical

constraints enforced by the domain-relations. The approach is related somewhat to the

work in [SAZ+18] that does not explicitly consider the incorporation of domain-knowledge

but does constrain a deep neural network’s structure by first grounding a set of weighted

first-order definite clauses and then turning them into propositional programs.

We note that newer areas are emerging that use representations for domain-knowledge

that go beyond first-order logic relations. This includes probabilistic first-order logic as

a way of including uncertain domain-knowledge [MDK+18]. One interesting way this

is being used is to constrain the training of “neural predicates”, which represent prob-

abilistic relations that are implemented by neural networks, and the framework can be

trained in an end-to-end fashion [MDK+18, WMMR21]. In DeepProbLog [MDK+18], for

example, high-level logical reasoning can be combined with the sub-symbolic discrimi-

native power of deep networks. For instance, a logic program for adding two digits and

producing the output sum is straightforward. However, what if the inputs are images

of the corresponding digits? Here, a deep neural network is used to map an image to

a digit, while a (weighted) logic program, written in ProbLog [DRKT07], for the ad-

dition operation, is treated as the symbolic domain-knowledge. The ProbLog program

is extended with a set of ground neural predicates for which the weights correspond to

the probability distribution of classes of digits (0, . . . , 9). The parameters (weights of

predicates and weights of neural network) are learned in an end-to-end fashion. A recent

approach called DeepStochLog [WMMR21] is a framework that extends the idea of neural

predicates in DeepProbLog to definite clause grammars [PW80]. The reader may note

that although DeepProbLog and DeepStochLog do not really transform the structure of

the deep neural network, we are still considering these methods under the heading of

specialised structures. This is because of the fact that the hybrid architecture is a tightly

coupled approach combining probabilistic logic and deep neural networks.

One of the approaches involves transformation of a probabilistic logic program to

graph-structured representation. For instance, in kLog [FCDRDG14] the transformed

representation is an undirected bipartite graph in the form of ‘Probabilistic Entity-

Relationship model’ [HMK07] which allows the use of a graph-kernel [VSKB10] for data

25

classification purpose, where each data instance is represented as a logic program con-

structed from data and background-knowledge. Another approach uses weighted logic

programs or templates with GNNs [ŠŽK21] demonstrating how simple relational logic

programs can capture advanced graph convolution operations in a tightly integrated

manner. However, it requires the use of a language of Lifted Relational Neural Networks

(LRNNs) [SAZ+18]. Template-based construction of deep neural network structure can

be also seen in Logical Neural Networks (LNNs: [RGL+20]). LNNs resemble a tree struc-

ture where the leaf nodes represent the facts in the data and background knowledge, the

internal nodes implement logical connectives (and, or, implication, etc.) using t-norm

operators derived from real-valued logic, and the outputs represent the rules [SdCRG21].

The inputs to LNNs are instantiated facts (Boolean), and the network is trained by min-

imising a constrained loss function which is a consequence of such a specialised structure.

An interesting proposal is to transform facts and rules, all represented in (weighted)

first-order logic into matrix (or tensor) representations. Learning and inference can then

be conducted on these matrices (or tensors) [SG16, CYM20] allowing faster computation.

NeuralLog [GC21], for example, extends this idea and constructs a multilayered neural

network, to some extent, similar to the ones in LRNN consisting of fact layer, rule layer

and literal layer etc. The learning here refers to the updates of the weights of the rules.

Another work that translates domain-knowledge in first-order logic into a deep neural

network architecture consisting of the input layer (grounded atoms), propositional layer,

quantifier layer and output layer is [DGS17]. Similar to LRNN, it uses the fuzzy t-norm

operators for translating logical OR and AND operations.

Further emerging areas look forward to providing domain-knowledge as higher-order

logic templates (or “meta-rules”: see [CDM20] for pointers to this area). To the best of

our knowledge, there are, as yet, no reports in the literature on how such higher-order

statements can be incorporated into deep neural networks.

2.5 Summary of the Review

Our primary discussion in this review is about the techniques for inclusion of some form

of domain-knowledge into deep neural networks. We classify these techniques of into 3

broad categories where the domain-knowledge (1) changes the input data representation,

(2) changes the loss function used for training the deep neural network, and (3) changes

the parameters or structure of the deep neural network. Under each of these categories,

we studied several techniques of inclusion of domain-knowledge. We summarise these

techniques in Figure 2.7. We discuss some practical challenges associated with these

techniques next.

We first outline some practical challenges in incorporating domain-knowledge encoded

as logical or numerical constraints into a deep neural network. Below, we outline some

26

Principal Approach Work (Reference) Type of Learner

Transforming Data DRM [Lod13] MLP

CILP++ [FZG14] MLP

R-GCN [SKB+18] GNN

KGCN [WZX+19] GNN

KBRD [CLZ+19] GNN

DG-RNN [YZQ+19] RNN

DreamCoder [EWN+20] DNN∗

Gated-K-BERT [YLD+21] Transformer

KRISP [MCP+21] GNN, Transformer

Transforming Loss IPKFL [KT07] CNN

ILBKRME [RSR15] MLP

HDNNLR [HML+16] CNN, RNN

SBR [DGS17] MLP

SBR [DRG17] CNN

DL2 [FBDC+19] CNN

Semantic Loss [XZF+18] CNN

LENSR [XXK+19] GNN

DANN [MIM+19] MLP

PC-LSTM [LZZ21] RNN

DomiKnowS [FGU+21] DNN*

MultiplexNet [HKBG21] MLP, CNN

Analogy Model [HH21] RNN

Transforming Model KBANN [TS94] MLP

Cascade-ARTMAP [Tan97] ARTMAP

CIL2P [GZ99] RNN

DeepProbLog [MDK+18] CNN

LRNN [SAZ+18] MLP

TensorLog [CYM20] MLP

Domain-Aware BERT [DSW+20] Transformer

NeuralLog [GC21] MLP

DeepStochLog [WMMR21] DNN*

LNN [SdCRG21] MLP

Figure 2.7: Some selected works, in no particular order, showing the principal approach of
domain-knowledge inclusion into deep neural networks. DNN∗ refers to a DNN structure
dependent on intended task. We use ‘MLP’ here to represent any neural network, that
conforms to a layered-structure that may or may not be fully-connected. RNN also
refers to sequence models constructed using Long Short-Term Memory (LSTM) or Gated
Recurrent Unit (GRU) cells.

immediate practical challenges concerning the logical constraints:

• There is no standard framework for translating logical constraints to neural net-

works. While there are simplification methods which first, construct a represen-

tation of the logical constraint that a standard deep neural network can consume,

27

this process has its limitations as described in the relevant section above.

• Logic is not differentiable. This does not allow using standard training of deep

neural network using gradient-based methods in an end-to-end fashion. Propagating

gradients via logic has now been looked at in [EG18], but the solution is intractable

and does not allow day-to-day use.

• Many neural network structures are directed acyclic graphs (DAGs). However,

transforming logical formulae directly into neural network structures in the manner

described in some of the discussed works can introduce cyclic dependencies, which

may need a separate form of translations.

• A deep neural network, with its structure constrained via logical domain-knowledge

may not always be scalable to large datasets.

There are also the following practical challenges concerning the numerical constraints:

• We have seen that the numerical constraints are often provided with the help of

modification to a loss function. Given some domain-knowledge in a logical repre-

sentation, constructing a term in loss function is not straightforward.

• Incorporating domain-knowledge via domain-based loss may not be suitable for

some safety-critical applications.

• The process of introducing a loss term often results in a difficult optimisation prob-

lem (sometimes constrained) to be solved. This may require additional mathemat-

ical tools for a solution that can be implemented practically.

Furthermore, in this review, we have not discussed how the domain-knowledge is to

be acquired from domain experts.

28

Chapter 3

Inclusion of Domain-Knowledge

using Propositionalisation∗

The simplest kind of neural network architecture to realise the power of deep learning is a

multilayer perceptron (MLP), also called a feed-forward fully-connected neural network.

An MLP consists of multiple hidden layers where each layer (linearly or non-linearly)

transforms the feature it receives at its input. Mathematically speaking, an MLP is a

composition of multiple (linear or non-linear) functions, trying to learn a hierarchy of

intermediate feature representations that most effectively aid the global learning task.

However, despite some spectacular successes, deep learning is thought unlikely to be

sufficient for many kinds of data analysis problems. Setting aside any infrastructural

difficulties, we still need to be able to address representational issues arising in problems

that require us to capture complex relationships amongst objects in the domain; and also

deal with the lack of large amounts of data.

Some of this difficulty may be alleviated if knowledge already available in the area

of interest can be taken into account, both to identify relationships in the data and to

play the role of priors (used here in the probabilistic sense, where prior distributions

are one way of dealing with small amounts of data). Consider, for example, a problem

in the area of drug design. Much may be known already about the target of interest,

small molecules that have proved to be effective, what can and cannot be synthesized

cheaply and so on. If these concepts are relevant to constructing a model for predicting

good drugs, it seems both unnecessary and inefficient to require a deep neural network

to re-discover them (the problem is actually worse: it may not even be possible to dis-

∗The content of this chapter is based on the following:
T. Dash, A. Srinivasan, R.S. Joshi, A. Baskar, “Discrete stochastic search and its application to feature-
selection for deep relational machines”, International Conference on Artificial Neural Networks, 2019;
https://doi.org/10.1007/978-3-030-30484-3_3. and
T. Dash, A. Srinivasan, L. Vig, O.I. Orhobor, R.D. King, “Large-scale assessment of deep relational
machines”, International Conference on Inductive Logic Programming, 2018; https://doi.org/10.

1007/978-3-319-99960-9_2. (⋆Winner of the Best Student Paper Award)

29

https://doi.org/10.1007/978-3-030-30484-3_3
https://doi.org/10.1007/978-3-319-99960-9_2
https://doi.org/10.1007/978-3-319-99960-9_2

cover the concepts from first-principles, using the data available). In Chapter 2 we have

described several ways in which logical encodings of complex background knowledge can

be provided to a deep neural network. In this chapter, we explore the simplest of these

approaches (propositionalisation [LDG91]) for use in the simplest form of deep neural

network (a multilayer perceptron, or MLP). In subsequent chapters, we will investigate

more sophisticated ways in which logical encodings of domain-knowledge can be included

into a more sophisticated form of deep neural network.

In this chapter, we describe Deep Relational Machines (or DRMs), which offer a

simple way of incorporating complex domain-knowledge into MLPs. In a DRM, domain-

knowledge is introduced through “relational features”: in the original formulation of

[Lod13] the features are selected by an Inductive Logic Programming (ILP) engine us-

ing domain-knowledge encoded as logic programs. Each input feature to a DRM is a

first-order Boolean function. For example, “function f1 is true if the instance x is a

molecule containing a 7-membered ring connected to a lactone ring”—definitions of re-

lations like 7-membered and lactone rings are expected to be present in the background

knowledge. In the original DRM formulation [Lod13], these functions are learned by an

ILP engine. This follows a long line of research sometimes called propositionalisation

in which features constructed by ILP have been used by other modelling methods like

regression, decision trees, SVMs, topic models, and multiplicative-weight linear threshold

models [FSK12, JRS08, RJBS07, SSR12, SSRN06, SSJ+09, SK99], inspired by the orig-

inal work in [LDG91]. In some recent works such as [Lod13, FZG15], the final model is

constructed in two steps: first, a set of features are obtained, and then, the final model

is constructed using these features, possibly in conjunction with other features already

available. Usually the models show significant improvements in predictive performance

when an existing feature set is enriched in this manner. In [Lod13], the deep neural

network with features obtained using an ILP engine is shown to perform well, although

the empirical evidence is limited. Reports in the literature on the use of DRMs have

been deficient on the following counts: (1) They have been tested on very small amounts

of data (the maximum appears to be 7 datasets–not all independent–with few 1000s of

instances); (2) The background knowledge involved has been modest, involving few 10s

of predicates; and (3) No guided strategy for selecting from the large space of possible

relational features appears to have been developed (simple random sampling appears to

be the most that has been employed: see for example [VSBV17]). In this chapter, we

address each of these shortcomings as follows: (1) We conduct experiments on over 70

real-world datasets obtained from biochemical domain involving 100s of 1000s of rela-

tional data instances (These datasets will form a running thread for experimental results

in the dissertation); (2) We use industrial-strength background knowledge involving mul-

tiple hierarchies of complex definitions of chemical structures to test the performance of

DRMs at large-scale. Overall, the domain-knowledge consists of definitions for about 100

30

predicates; and (3) We propose a utility-based strategy called “hide-and-seek” sampling,

for drawing relational features from a large but countable space of possible features.

3.1 Some Logic Programming Concepts

We first outline some standard logic programming concepts required for understanding

some upcoming portions of this chapter. For additional background and further termi-

nology see [Nil91, CL14, Llo12, Md94].

A language of first order logic programs has a vocabulary of constants, variables,

function symbols, predicate symbols, logical implication ‘←’, and punctuation symbols.

A function or predicate can have a number of arguments known as terms. Terms are

defined recursively. A constant symbol (or simply “constant”) is a term. A variable

symbol (or simply “variable”) is a term. If f is an m-ary function symbol, and t1, . . . , tm

are terms, then the function f(t1, . . . , tm) is a term. A term is said to be ground if it

contains no variables.

We will use the convention used in logic programming when writing clauses. Thus,

predicate, function and constant symbols are written as a lower-case letter followed by

a string of lower- or upper-case letters, digits or underscores (‘ ’). Variables are written

similarly, except that the first letter must be upper-case. Usually, predicate symbols will

be denoted by symbols like p, q, r etc. and symbols like X, Y, Z to denote variables. If p is

an n-ary predicate symbol, and t1, . . . , tn are terms, then the predicate p(t1, . . . , tn) is an

atom. Predicates with the same predicate symbol but different arities are distinguished

by the notation p/n where p is a predicate of arity n.

A literal is either an atom or the negation of an atom. If a literal is an atom it is

referred to as a positive literal, otherwise it is a negative literal. A clause is represented as

an implication (or “rule”): l1, . . . , li ← li+1, . . . , lk, where each lj is an atom. Alternatively,

such a clause can also be represented as a disjunction of literals: {l1 ∨ · · · ∨ li ∨ ¬li+1 ∨
· · ·∨¬lk} or as a set of literals: {l1, . . . , li,¬li+1, . . . ,¬lk}. A definite clause l1 ← l2, . . . , lk

has exactly one positive literal, called the head of the clause, with the literals l2, . . . , lk

known as the body of the clause. A definite clause with a single literal is called a unit

clause, and a clause with at most one positive literal is called a Horn clause. A set of

Horn clauses is referred to as a logic program.

Example 3.1. Some examples of clauses:

(1) p(X)←

(2) p(X)← q(X, 2)

(3) p(X)← q(X, Y), r(Y)

31

A substitution θ is a finite set {V1/t1, . . . , Vn/tn} mapping a set of n distinct variables

Vi, 1 ≤ i ≤ n, to terms tj, 1 ≤ j ≤ n such that no term is identical to any of the variables.

A substitution containing only ground terms is a ground substitution. For substitution θ

and clause C the expression Cθ denotes the clause where every occurrence of a variable

in C is replaced by the corresponding term from θ. If θ is a ground substitution then Cθ

is called a ground clause.

3.2 Relational Data and Relational Features

This dissertation is about using machine learning to construct models from what we

will be calling “relational data”. It is common in machine learning to learn from data

represented by feature-vectors, in which the jth feature for the ith data instance xi is of

the form fj(xi) = vij. But this is just a special case of representing data using a single

relation (the equality relation, =). More generally, we can imagine that properties of xi

could be described by using many other relations. Consider, for example, allowing the

use of the inequality relation ≤ to be included in the description of xi. Then, perhaps

we could additionally say (fj(xi) = vij) ∧ (vij ≤ 2.5). In this dissertation, we will use

the term relational data to refer to data that can be described at least in the form of

multiple tables in a relational database. Without getting into the details of exactly what

relations are present, we will simply denote the set of relational data by X . In addition,

each relational data instance in X is associated with a class label, the class to which the

instance belongs. We denote a finite set of class labels by Y . A set of labelled relational

data instances, denoted by E , can be defined as a binary relation class which is a subset

of the Cartesian product X ×Y . Any element in E is denoted by class(x, c) where x ∈ X
and c ∈ Y .

In this chapter, we intend to learn deep neural networks using relational features

describing the relational data instances. Informally, a “relational feature” is intended to

capture the relations that exist in relational data instances. We represent a relational

feature as a single definite clause:

Ci : ∀X (p(X)← Cpi(X))

or, simply written without the quantifier as

Ci : p(X)← Cpi(X)

where X is a variable takes values of relational data instances in X , Cpi(X) is a con-

junction of predicates. Each predicate in Cpi(X) is defined as part of some background

knowledge B and it can have variables which are existentially quantified. For us, re-

32

lational features will therefore be a definite-clause in a restricted form of Datalog (we

will not allow recursion). The distinguished literal p(·) is called the “head” or the “head

literal” of Ci, which we assume is unique. The conjunction of predicates Cpi(·) is called

the “body” of clause Ci. In addition, as we mentioned, Ci is not self-recursive, that is,

the body of Ci does not contain literal of the form p(·).

Example 3.2 (The trains problem). Let’s take an example of a problem introduced by

Michalski on discriminating between eastbound and westbound trains [Mic80]. The prob-

lem has the following setting:

• Consider there are two sets of trains: trains going east (Eastbound) and trains going

west (Westbound).

Figure 3.1: Michalski’s “trains” problem; adapted from [Mic80, MMPS94].

• Each train comprises of a set of locomotive pulling wagons; whether a particular

train is travelling towards the east or towards the west is determined by some prop-

erties of that train.

• The learning task here is to determine what governs which kinds of trains are east-

bound and which kinds are westbound.

• The following background knowledge about each wagon (or car) in the train are

available: which train it is part of, its shape, how many wheels it has, whether it is

open (i.e. has no roof) or closed, whether it is long or short, the shape of the things

the car is loaded with. In addition, for each pair of connected wagons, knowledge

of which one is in front of the other can be extracted. In a relational database,

these information are represented as tables. Information about any relational data

instance can then be obtained by natural joins among these tables.

• Let the background knowledge consists of the following tables: has car(Train, Car),

short(Car), closed(Car), shape(Car,Geometry), wheels(Car, Count).

33

• Given some relational data instances representing trains, here are some relational

features:

C1 : (p(X)← has car(X, Y))

C2 : (p(X)← has car(X, Y), short(Y))

C3 : (p(X)← has car(X, Y), closed(Y))

C4 : (p(X)← has car(X, Y), short(Y), closed(Y))

C5 : (p(X)← has car(X, Y1), short(Y1), has car(X, Y2), closed(Y2))

Here the variable X in the head literals of the above features is universally quan-

tified, denoting any train, and the variables Y , Y1 and Y2 in the body literals are

existentially quantified, denoting cars. It is evident that the relational features are

able to describe a relational data instance with the help of the predicates in the

background knowledge (here: has car/2, short/1 and closed/1).

3.3 Propositionalisation

Many deep neural networks, such as MLPs require a data instance to be represented as

a single numeric feature vector or a tensor. But, the clausal representation of relational

features as described in the previous section does not tell us how to obtain a valuation (in

Boolean or in real) of the feature itself for any data instance X = x. Therefore, we need

a mechanism to convert these relational features into numeric feature vectors. A popular

technique within the area of relational learning is propositionalisation that provides a

way to encode relational features as Boolean-valued feature vectors [Lav90, LDG91]. We

will call this kind of encoding of relational features as “proposionalised encoding” and

define it as follows.

Definition 3.1 (Propositionalised Encoding). Given a set of relational data instances

X , background knowledge B, a set of relational features C = {C1, . . . , Cd}, where each

Ci ∈ C is of the form (p(X) ← Cpi(X)), the propositionalised encoding of a relational

feature for a data instance x ∈ X is a mapping f : C × X → {0, 1} defined as:

f(Ci, x) =

1 if B ∪ Ci{X/x} |= p(x)

0 otherwise.

Thus, the propositionalised representation of the data instance x with d-relational

features in C is a vector: (f(C1, x), f(C2, x), . . . , f(Cd, x)).

34

Example 3.3 (Propositionalisation of Trains). Let C consists of the relational features

described in Example 3.2. The propositionalised representation of the trains dataset de-

scribed above would look like the following, where x denotes an instance representing a

train.

Example f(C1, x) f(C2, x) f(C3, x) f(C4, x) f(C5, x) class

x1 1 1 1 1 0 eastbound

x2 1 1 1 1 1 eastbound
...

...
...

...
...

...
...

xN 1 1 1 0 0 westbound

3.4 A Discrete Space of Relational Features

For use in a DRM, we need to identify a set of relational features and their values for

the data. Here we arrive at an immediate difficulty: the set of relational features can be

extremely large (in many cases, even infinitely large). How are we to select a suitable

subset of these for a DRM? Two aspects will be helpful to us. First, the set does have some

structure: the relation of θ-subsumption (see Plotkin [Plo72]) imposes a partial-ordering

on the set. Secondly, the field of Inductive Logic Programming (ILP) has developed

techniques for bounding the set. We describe some of these concepts in brief as follows.

Definition 3.2 (Plotkin’s θ-Subsumption). A clause C1 θ-subsumes a clause C2 if and

only if there exists a substitution θ such that C1θ ⊆ C2. We write C1 ⪯θ C2 to denote C1

θ-subsumes C2. Further, whenever C1 ⪯θ C2 we will call C1 is more general than C2 and

C2 is more specific than C1. For a set of clauses S and the subsumption ordering ⪯, we
have that for every pair of clauses C1, C2 ∈ S, there is a least upper bound and greatest

lower bound, called, respectively, the least general generalisation (lgg) and most general

unifier (mgu) of C1 and C2, which are unique up to variable renaming. The subsumption

partial ordering on clauses enables the definition of a lattice, called the subsumption

lattice.

Example 3.4 (θ-subsumption). For the following two clauses C1 and C2, C1 θ-subsumes

C2, where θ = {X/a, Y/b} is a ground substitution. C1 is more general than C2 and C2

is more specific than C1.

C1 : p(X, Y)← q(X, Y), r(X) C2 : p(a, b)← q(a, b), r(a).

Similarly, for C3 and C4 below, C3 θ-subsumes C4, where θ = {X/Z, Y/Z}. C3 is more

general than C4 and C4 is more specific than C3.

C3 : p(X, Y)← q(X, Y), q(Y,X) C4 : p(Z,Z)← q(Z,Z).

35

A fragment of the subsumption lattice over the set of relational features for the trains

problem is shown in Figure 3.2.

Figure 3.2: A fragment of the subsumption lattice of relational features for the trains
problem.

3.4.1 Bounding the Lattice of Relational Features

We will resort to techniques developed in Inductive Logic Programming (ILP) to restrict

the subsumption lattice in various ways. The techniques are mainly under the category

of Mode-Directed Inverse Entailment, or MDIE, described in [Mug95]. We extensively

use MDIE in a later chapter (Chapter 5), and postpone a formal description until then.

For the present, we only present the relevant aspects in an informal manner.

MDIE allows us to bound the subsumption lattice by a top element. For us, this is the

relational feature with an empty-body. Given a relational data instance e, background

knowledge B, and a set of “mode declarations” M (again, we postpone a description

of these to Chapter 5). MDIE identifies a bottom element for the subsumption lattice,

called the most-specific clause, denoted by ⊥B,M(e). For us, this is the relational feature

that contains all the information in B that is related to e. In practice, ⊥B,M(e) could be

very large, sometimes infinitely-long. To address this, a further depth-bound d, and the

resulting clause is the depth-limited most-specific clause in the mode-language, denoted

by ⊥B,M,d(e), which is finite.

36

Example 3.5 (Bounded Subsumption Lattice in ILP). A bounded subsumption lattice of

relational features for our Trains example is shown in Figure 3.3.

Figure 3.3: The subsumption lattice of relational features for the trains problem. The
space is bounded by p(X) ← TRUE at the top and by the bottom-clause (⊥B,M(e)) at
the bottom. The size of the space is bounded by O(2|⊥B,M(e)|). The relational features
are sampled from this space.

We will sample relational features from the bounded lattice constructed by MDIE.

We investigate two kinds of sampling strategies: (1) simple random sampling; and (2)

a utility-based sampling. The latter is a new sampling strategy that we propose in this

dissertation and it is inspired from the idea of the popular “hide-and-seek” games.

For simple random sampling of relational features using MDIE, we use the procedure

37

from [SSR12]. For completeness, the procedure is reproduced in Procedure 1, using the

terminology adopted in this dissertation. The steps are as follows: Given e, B, M,

d, let the depth-limited bottom-clause be denoted by ⊥B,M,d(e). The procedure needs

a parameter called language constraints L that imposes additional restrictions on the

relational features to be constructed by the procedure. One such restriction is the number

of literals in the body of the relational feature. The procedure then constructs a clause

Ci that subsumes ⊥B,M,d(e) by randomly sampling a subset of literals from the body of

⊥B,M,d(e). If Ci is not a redundant clause (that is: not drawn earlier) then a relational

feature is constructed from it, as described formally in Procedure 1. This process is

repeated until a preset maximum number of features (MaxDraws) is obtained. The

construction of ⊥B,M(e) in Step 7 is as described in [Mug95], and subsumption refers

to Plotkin’s θ-subsumption as described earlier. The redundancy test used in Step 9 is

subsumption-equivalence (which is weaker than logical equivalence).

Procedure 1 Simple random sampling of relational features from a bounded lattice.

1: procedure DrawFeatures(X , B, M, d, L, MaxDraws)
2: Let draws = 0
3: Let Drawn be ⟨⟩
4: Let i = 1
5: while draws ≤MaxDraws do
6: Randomly draw with replacement an example, ei ∈ X
7: Let ⊥B,M,d(ei) subsumes ⊥B,M(ei) ▷ Depth-limited bottom-clause.
8: Randomly draw a clause Ci s.t. Ci ⊆ ⊥B,M,d(ei)
9: if Ci is not redundant given Drawn then
10: Let Ci = (p(X)← Cpi(X))
11: Update sequence Drawn with Ci

12: increment i
13: increment draws
14: return Drawn

3.5 Utility-based Sampling of Relational Features

We motivate our approach using a search-based view of feature selection. We can con-

ceptually view this task as searching through subsets of all possible features that an ILP

engine can construct. If the number of features that an ILP engine can construct, given

data and background knowledge, denoted by F , is small (below 10), then for each subset

of features, we can construct and evaluate a DRM model and record its performance.

Then the task is then to identify the feature subset that results in the best performance.

However, in all practical situations, the set F will be very large (100s of 1000s or more).

As a search problem, it is neither feasible to construct all the features nor practically

possible to construct and evaluate all the models that can be constructed using these fea-

38

tures, making the search problem intractable. The figure shown in Figure 3.4 describes

the problem pictorially. Even the search for a single good relational feature, in the large

discrete space of features, can prove to be difficult. Figure 3.5 shows the feature space for

the trains problem where each feature is associated with some utility score. The search

problem described here, either for a feature subset or a single relational feature, can be

mapped to the standard problem of “hide-and-seek” game, in which a hider (here the

best subset or the best relational feature) hides in one of several locations (here, 2|F| or

O(2|⊥B,M(e)|)) selected using some probability distribution (the ‘hider distribution’, de-

noted by H). The task of the seeker (here, the search procedure) is to find the hider by

opening as few boxes as possible, guided by its own distribution (the ‘seeker distribution’,

denoted by S). We formalise this optimisation problem by examining the relationship

between the hider and seeker distributions. Intuitively, it would seem that an optimal

search will result if the two distributions are the same. Our formalisation, however, shows

that, surprisingly, this is not the case.

Figure 3.4: Redrawn and adapted from [JRS08]. Identifying the best subset of rela-
tional features for constructing a DRM. The X-axis enumerates the different subsets of
relational features that can be constructed by an ILP engine (F denotes the set of all
possible relational features that can be constructed by the engine). The Y-axis shows the
probability that a data instance drawn randomly using some pre-specified distribution will
be correctly classified by the constructed DRM, given the corresponding feature-subset
in X-axis. We wish to identify the subset that yields the highest probability, without
actually constructing all the features in F .

Our interest is in machine learning algorithms searching potentially infinite discrete

spaces [Blu92]. These algorithms can be applied for solving problems concerning natural

phenomena that will involve sampling from known or unknown distribution. One example

of this kind of problem is prediction of carcinogenicity of chemicals [KMSS96] which

forms the application area in this thesis. In such cases, it is conceptually useful to

think of targets being distributed according to some non-uniform distribution H. This

machine learning setting of searching for targets in natural phenomena is different to the

adversarial setting of a hide-and-seek game in which the purpose of the hider is to make

39

Figure 3.5: The subsumption lattice of relational features for the trains problem. Each
feature is associated with a utility score (shown in red colour). Our proposed utility-based
sampling strategy selects features from this space.

search as difficult as possible for the seeker. It will be seen below that this corresponds to

the special case of H being a uniform distribution, which results in the maximal number

of misses by the optimal S. Nevertheless, in this chapter, we will still refer to H as a

“hider distribution”, and to S as a “seeker distribution”, with the caveat that this will not

necessarily imply an adversarial setting. Furthermore, practical machine learning often

deals with good, rather than optimal solutions. This means that there may be more than

one possible target, and finding any one of them should suffice. We can characterise what

this means in terms of H, and how will this affect the choice of S. In what follows, (1) We

develop a relation between H and S. Further, we address theoretically and experimentally

the cases arising from non-uniform H’s and from many good solutions; (2) The results are

used to develop a sampling procedure for large discrete search spaces; (3) The sampling

procedure is then used to select features for Deep Relational Machines (DRMs) from a

large space of relational features.

3.5.1 A Distributional Model of Discrete Search

We start with a distributional model that is consistent with the description of the discrete

search hide-and-seek game in [Ruc91] and [Sto76]. We start with n boxes and one ball.

40

The ball is thrown onto the boxes (and it must fall into one of them) with some prob-

ability. For us, this gives rise to the “hider distribution” H on the boxes. A stochastic

search procedure is a sampling strategy that draws boxes at random using some “seeker

distribution” S, until it succeeds eventually after m trials to find the ball. A miss can

be understood as an event of selecting (opening) a box and not finding the ball. Here

we will assume that if the ball is in a box opened, then it will be detected. There is a

cost associated with this search, monotonic in the number of misses m. It is natural to

expect that the expected cost to find the ball will depend on whether or not H is known.

We sharpen this intuition using the ideal setting when H is known completely to the

stochastic search procedure.

Hider distribution known

We will assume that if the ball is in a box, then it will be found. As with a generalised

form of the hide-and-seek game, this can be changed to allow finding the ball with some

probability even if it is there. Let Z be a random variable for number for misses by the

search before finding the ball. We want to find the expected number of misses E[Z]|H,S.

Lemma 3.1 (Expected number of misses with a single ball). Let H = (h1, h2, . . . , hn)

and S = (s1, s2, . . . , sn) be discrete probability distributions. Assume that hi, si > 0 for

i = 1 to n. Let the ball be in one of the n boxes according to the hider distribution H.

The search attempts to find the ball using the seeker distribution S. Then, the expected

number of misses is

E[Z]|H,S = E[Z] =
n∑

k=1

hk
sk
− 1. (3.1)

Proof: The ideal case is E[Z] = 0. That is, on average, the search opens the correct box

k on its first attempt. Now P(Z = 0| the ball is in box k) = hksk = hk(1− sk)0sk. Since

the ball can be in any of the n boxes, P(Z = 0) =
∑n

k=1 hk(1 − sk)0sk. More generally,

for Z = j, the search opens wrong boxes j times, and P(Z = j) =
∑n

k=1 hk(1 − sk)jsk.

The expected number of misses can now be computed:

E[Z]|H,S =
∞∑
j=0

jP(Z = j)

=
∞∑
j=0

j
n∑

k=1

hk(1− sk)jsk.

41

Swapping the summations over j and k, and using the geometric series
∑∞

j=1 a
j = 1

1−a
,

whenever |a| < 1, we get

E[Z]|H,S =
n∑

k=1

hksk

∞∑
j=0

j(1− sk)j

=
n∑

k=1

(
hksk

1− sk
s2k

)
=

n∑
k=1

(
hksk
s2k
− hks

2
k

s2k

)
=

n∑
k=1

hk
sk
−

n∑
k=1

hk.

Since
∑

k hk = 1, this simplifies to

E[Z]|H,S =
n∑

k=1

hk
sk
− 1.

■

We note that E[Z]|H,S is n − 1 when H = S or when S is a uniform distribution. Also,

we state here that E[Z]|H,S ≥ (n− 1) when H is uniform (this is shown later).

A generalisation of the expression of the expected misses above can be derived when

there is more than one ball and each box can contain not more than one ball. The

expected number of misses is lower if it is sufficient for the search to find any one of the

balls.

Lemma 3.2 (Expected number of misses with K balls). Let H and S be discrete dis-

tributions as in Lemma 3.1. Let K balls be in K of the n boxes according to the hider

distribution H. The search attempts to find at least one ball using the seeker distribution

S. Then, the expected number of misses is

E[Z]|H,S =
∑
i

σ(i)∈P(n,K)

(
K∏
k=1

h
(k)
σ(i)

) 1(∑K
k=1 s

(k)
σ(i)

) − 1

 , (3.2)

where, σ(i) is the ith position in the permutation of 1, . . . , n.

Proof: This extends the Lemma 3.1 to a general case of multiple (K) stationary hiders.

The number of ways the K hiders can choose to hide in n boxes is nPK . Let P(n,K)

denote a set of all such permutations. For example, if there are 3 boxes (locations) and

2 hiders, they can hide in these boxes in 6 possible ways. That is, the first hider hides in

box 1 and the second hider hides in box 2, denoted by (1, 2), and so on, as follows:

P(3, 2) = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}.

42

All the K hiders can hide in any one of the choices in P(n,K) with probability(
h
(1)
σ(i)h

(2)
σ(i) . . . h

(K)
σ(i)

)
,

where h
(k)
σ(i) denotes the probability of the hider in kth place in the selected choice of σ(i).

Analogously, the seeker can find any one of these hiders with probability(
s
(1)
σ(i) + s

(2)
σ(i) + · · ·+ s

(K)
σ(i)

)
,

and would not find the hider once is

1−
(
s
(1)
σ(i) + s

(2)
σ(i) + · · ·+ s

(K)
σ(i)

)
.

If the seeker makes the search j times, the probability that it will not find a hider is(
1−

(
s
(1)
σ(i) + s

(2)
σ(i) + . . . s

(K)
σ(i)

))j
.

Now, the expected misses for this multiple hider formulation is given as

E[Z] =
∑
i

σ(i)∈P(n,K)

K∏
k=1

h
(k)
σ(i)

∞∑
j=0

j

(
1−

K∑
k=1

s
(k)
σ(i)

)j K∑
k=1

s
(k)
σ(i).

This further simplifies to

E[Z]|H,S =
∑
i

σ(i)∈P(n,K)

K∏
k=1

h
(k)
σ(i)

(
1∑K

k=1 s
(k)
σ(i)

− 1

)
.

■

All the results above are derived assuming sampling with replacement. The first reason

for this assumption is simply mathematical convenience. Sampling without replacement,

when all boxes have equal probability is governed by the hypergeometric distribution,

yielding (n− 1)/2 misses on average (see below).

Lemma 3.3 (Expected misses for uniform S). Let H and S be discrete distribution as

in Lemma 3.1 and S be uniform. Let the ball be in one of n boxes according to the

hider distribution H. The search attempts to find the ball using the seeker distribution S

without replacement. Then, the expected number of misses is

E[Z]|H,S =
n− 1

2
. (3.3)

Proof: From Lemma 3.1, we have:

43

E[Z]|H,S =
∞∑
j=0

jP(Z = j) =
∞∑
j=0

j

n∑
k=1

hk(1− sk)jsk.

Since the search is without replacement, it will incur a maximum of n − 1 misses

before the hider is found. Therefore, the summation over j will run till n− 1 (unlike till

∞, in the search with replacement case). Further, a search without replacement would

mean that once a box is opened and the hider was not found in the box, that box will

be removed from the search space. This leads to a distribution of the probability mass

to the rest of the boxes. This implies:

E[Z]|H,S =
n−1∑
j=0

j

n∑
k=1

hk

(
1− 1

n

)
. . .

(
1− 1

n− j + 1

)
︸ ︷︷ ︸

j terms

(
1

n− j

)

=
n−1∑
j=0

j
n∑

k=1

hk

(
n− 1

n

)
. . .

(
n− j

n− j + 1

)(
1

n− j

)
.

Simplifying the above and since H is a distribution, we get

E[Z]|H,S =
n−1∑
j=0

j
n∑

k=1

hk
1

n
=
n− 1

2
.

■

However, with non-uniform hider distributions, the appropriate seeker distribution is

the more complex Wallenius non-central hypergeometric distribution, which is difficult

to solve analytically (but numerical solutions are tractable in some cases: see [Fog08]).

Secondly, it can be argued that for real problems involving multiple rounds of experimen-

tation, sampling with replacement is in fact the correct model, since hypotheses discarded

in one experiment, may nevertheless become viable options on later ones. Thirdly, it is

a well-known practicality, that the differences do not matter if n is large. These caveats

notwithstanding, the results in the next section can be seen as upper-bounds on those

obtainable when sampling is done without replacement (even with a non-central hyper-

geometric distribution).

The following result is a consequence of the fact that H and S are distributions:

Theorem 3.1 (Expected misses is convex). Given a distribution H, and a positive dis-

tribution S,

E[Z]|H,S =
n∑

i=1

hi
si
− 1

is convex.

44

Proof: The problem can be posed as a constrained optimisation problem in which the

objective function that is to be minimized is

E[Z]|H,S ≡ f(S) =
n∑

i=1

hi
si
− 1.

For notational simplicity, we have denoted the function E[Z]|H,S as f(S). Our objective

is to minimize the function f given any hider distribution H.

A practical test for convexity of a function is to check whether the function f has

non-negative second derivative for all si in a given interval of f . A twice differentiable

function, if convex, would curve-up without any inflection points in the given interval.

Note that f is a scalar function of multiple variables; that is, S = (s1, s2, . . . , sn). Let

∇f denote the result of the partial derivative of f with respect to S. The result is clearly

the vector

∇f =

(
∂f

∂s1
,
∂f

∂s2
, . . . ,

∂f

∂sn

)
=

(
−h1
s21
,−h2

s22
, . . . ,−hn

s2n

)
.

Now, computing the double derivative of f with respect to S, denoted by ∇2f , we

get the following Hessian matrix:

∇2f = ∇(∇f) = 2



h1

s31
0 . . . 0

0 h2

s32
. . . 0

...
...

. . . 0

0 0 . . . hn

s3n

 .

Since, ∀i, hi ≥ 0, si > 0, we can claim that ∇2f has all non-negative second derivative

components which proves the convexity of f . ■

It follows that there is an optimal seeker distribution S∗ such that Equation (3.1) is

minimised.

Theorem 3.2 (Optimal S given H). Let H be a discrete distribution as in Lemma 3.1.

The optimal seeker distribution S∗ = (s∗1, s
∗
2, . . . , s

∗
n) where s∗i =

√
hi∑n

j=1

√
hj
, 1 ≤ i ≤ n.

Proof: We will write E[Z]|H,S as a function of S i.e. f(S). Our objective is to minimise

f(S) =
∑n

i=1
hi

si
subject to the constraint

∑n
i=1 si = 1. The corresponding dual form

45

(unconstrained) of this minimisation problem can be written as

g(S, λ) =
n∑

i=1

hi
si

+ λ

(
1−

n∑
i=1

si

)
(3.4)

To obtain the optimal values of S and λ, we set ∂g
∂si

= 0 for i = 1, . . . , n, and ∂g
∂λ

= 0. This

gives −hi

s2i
− λ = 0 and

∑n
i=1 si = 1, which simplifies to si = −

√
hi√
λ
, ∀i. Substituting the

value si in
∑n

i=1 si = 1 and the value of the parameter λ = −hi

s2i
, we get −

∑n
i=1

√
hi

−
√

hi
si

= 1.

Simplifying the R.H.S. of Equation (3.4), we obtain the desired optimal seeker distribution

S∗, s∗i =
√
hi∑n

j=1

√
hj
, 1 ≤ i ≤ n. ■

The following result follows for the special case of a uniform H:

Corollary 3.1 (S∗ for Uniform H). If H ∼ Unif(1, n), then S∗ ∼ Unif(1, n) and

E[Z]|H,S∗ = n− 1.

Proof: If S∗ is non-uniform with s∗i > 0 for all i, we have

E[Z]|H,S∗ =
1

n

n∑
i=1

1

s∗i
− 1 ≥ n∑n

i=1 s
∗
i

− 1.

The denominator is 1 because S∗ is a distribution. So, S∗ must be a uniform distribution

and in this case, the quantity

E[Z]|H,S∗ =
n∑

i=1

1/n

1/n
− 1 =

n∑
i=1

1− 1 = n− 1.

■

We note that this result is consistent with those presented in [Ruc91, Sto76] for the

hide-and-search game, where the adversarial nature of the game requires the hider to

select a uniform distribution to maximise the expected misses by a seeker.

If H distribution is non-uniform, then we note the following:

Corollary 3.2. Given a non-uniform hider distribution H and a corresponding optimal

seeker distribution S∗, we have

E[Z]|H,S∗ =
n∑

i=1

hi
s∗i
− 1 =

n∑
i=1

(√
hi

)2
− 1.

46

Proof: The proof follows from the series of equalities,

E[Z]|H,S∗ =
n∑

i=1

hi
s∗i
− 1

=
n∑

i=1

hi(
√
hi∑j

j=1

√
hj

) − 1

=
n∑

i=1

√
hi

j∑
j=1

√
hj − 1 =

n∑
i=1

(√
hi

)2
− 1.

■

With non-uniform H, the value of E[Z] can get substantially lower than n− 1, which

was obtained for uniform H. Thus, for non-uniform H, we find the following:

Theorem 3.3. Let H and S∗ be defined as in Theorem 3.2. Let KLD(U ||V) denote the

Kullback-Liebler divergence between distributions U and V . Then,

E[Z]|H,S∗ = 22KLD(H||S∗)+Entropy(H) − 1.

Proof: The KL-divergence between the two distributions H and S∗ is defined as

KLD(H∥S∗) :=
n∑

i=1

hi log2

hi
s∗i

=
n∑

i=1

hi log2 hi −
n∑

i=1

hi log2

√
hi∑n

j=1

√
hj

(using Theorem 3.2)

=
1

2

n∑
i=1

hi log2 hi + log2

(
n∑

j=1

√
hj

)(
n∑

i=1

hi

)

= −1

2
Entropy(H) + log2

(
n∑

j=1

√
hj

)

= −1

2
Entropy(H) + log2 (E[Z]|H,S∗ + 1)

1
2 (using Corollary 3.2)

=
1

2
[−Entropy(H) + log2 (E[Z]|H,S∗ + 1)] .

On simplifying, we get the required relation between E[Z]|H,S∗ and KLD(H∥S∗). ■

Based on the earlier result for uniform H, it is evident that if H is uniform, entropy of H

will be a maximum, and the KL-divergence between H and S∗ will be 0. As entropy of H

decreases (H is non-uniform), although the KLD term increases, the overall expression

has a minimum for S = S∗. We provide some further intuition about the optimal seeker

S∗ for the case of non-uniform H. In this case, some boxes will have higher than uniform

probability of containing the target, and some will have less than uniform probability. In

47

order to minimise misses, the seeker also needs to look at unlikely boxes. Specifically, an

unlikely box has to be selected with higher probability than that used by H to avoid many

misses if the box contains the target. Therefore, in general, the optimal S distribution

needs to have higher probabilities on unlikely boxes than the hider; and to compensate,

lower probabilities on the likely boxes. This pushes the seeker closer to the uniform

distribution, and therefore usually with higher entropy than H.

If, on the other hand, H is uniform then the seeker simply cannot use any higher

entropy distribution and has no choice but to follow the hider’s uniform distribution.

All these results require H to be known. In practice, the question is what can be done

if H is not known. We consider this in the following section for the case of non-uniform

H.

Hider Distribution Unknown

In almost all practical situations, we do not know H. What can be done in such cases?

Based on the results of the previous section, we will begin by assuming, for efficient

target identification, that H is non-uniform. We define a 2-partition of the locations

based on H as follows: the U partition contains locations that have probability greater

than uniform probability (> 1
n
) and the rest forms the V partition. Furthermore, we

assume the following:

• Any target location has probability greater than 1
n
. All targets are to be found in

the “target partition”. W.l.o.g., we can take the target partition to be U ; and

• The size of the target partition is known to be the proportion p (0 < p < 1).

The sample size (denoted1 by s), which with high probability, will result in boxes from

the target partition can be calculated.

Lemma 3.4 (Samples from the target partition). Let H be a distribution over a set X.

Let U denote the set of boxes {x ∈ X : h(x) > 1/n} and L = X − U . Without loss of

generality, let the target(s) be in U , and let p = |U |/|X| (> 0). Then a sample of size

s ≥ log(1− α)

log(1− p)

will contain at least one element of U with probability ≥ α.

Proof: The probability that a randomly drawn box is not in the U partition is (1− p).
The probability that in a sample of s boxes, none are from the U partition is (1−p)s, and

1This use of s should not be confused with the search-distribution probability si for a location i.

48

therefore the probability that there is at least 1 box amongst the s from the U partition

is 1− (1− p)s. We want this probability to be at least α. That is,

1− (1− p)s ≥ α.

With some simple arithmetic, it follows that

s ≥ log(1− α)

log(1− p)
.

■

With the assumptions above, it is evident that the higher the number of targets, the

greater the value of p, and the smaller the sample size s. That is, with many possible

locations containing targets, it is easier to find at least one target location.2 Of course,

sampling only guarantees, with high probability, that there will be at least one box from

the target partition. Thus, not all boxes in the sample will be from the target partition;

and of those, not all may contain a target.

A procedure that uses the sample to search for the targets is in Procedure 2. The

procedure takes as inputs: X, a set of boxes; p (> 0), the proportion of boxes in the

target’s partition; α, lower bound on probability of finding an element from the target’s

partition; t, an upper bound on the iterations of the sampler (This is same as MaxDraws

in Procedure 1); function Hider : X → {TRUE,FALSE} such that Hider(x) is TRUE

for box x if a ball is in box x, and FALSE otherwise; and returns a box with a target

and the number of misses.

Procedure 2 The Sampling Procedure

1: procedure Sampler(X, p, α, t, Hider)
2: done← FALSE
3: m← 0
4: s← ⌈ log(1−α)

log(1−p)
⌉

5: while ¬done do
6: Sample← Draw(Unif, s,X) ▷ Draw a sample of s boxes from X
7: X ′ ← {x : x ∈ Sample and Hider(x) = TRUE}
8: if X ′ ̸= ∅ or m > t then
9: done← TRUE
10: m← m+ 1

11: x← Draw(Unif, 1, X ′)
12: return (x,m)

The following issues with this procedure are apparent immediately:

2We note that a similar argument is used in [HZJ07] to identify possibly good solutions in discrete event
simulations; and is proposed for use in Inductive Logic Programming (ILP) in [Sri99b]. Both do not
explicitly relate this to a distribution model, as is done here.

49

• Since sampling is done with replacement, in the worst case, the procedure can end

up drawing many more than n − 1 samples before finding the hider, unless the

bound t stops the procedure before this happens;

• If Hider(x) = FALSE for all x ∈ B (that is, there is no ball), then the procedure

will not terminate until the bound t is reached; and

• This procedure does not take into account the boxes which are already sampled

(that is, the boxes are drawn independently of each other).

Obvious corrections for the first two issues are either to bound the maximum rounds

of sampling allowed; or to use sampling without replacement (in experiments in this

chapter, we adopt the former). One way in which t could be assigned is as follows: Let β

denote a lower bound on the probability of obtaining a hider in t trials, each with sample

s determined by p and α (that is, the probability of identifying a box with a ball is at

least α). It is not hard to derive that if t ≥ log(1−β)
log(1−α)

then the probability of identifying

a box with a ball in t trials will be at least β. The number of boxes after t rounds of

sampling is clearly s × t. To address the third issue, sampling can be made conditional

on boxes already obtained (that is, adopting a Markov model): we do not pursue this

further in this dissertation.

The procedure also assumes that there can be more than one box x ∈ X with

Hider(x) = TRUE, and that it is sufficient to find any one of these boxes. This as-

sumption about multiple hiders often makes sense in practice, when we are happy with

near-optimal solutions. We will demonstrate the applications of the above theoretical

findings using simulations below.

Distributional Model of Discrete Search: Simulations

The results from simulations are as follows:

Known hider distribution Results of simulations with known H distributions are in

Figure 3.6. These results confirm the following:

1. The seeker distribution obtained in Theorem 3.2 have higher entropy than the

hider distribution (as expected).

2. For hider distributions other than the uniform, it is possible to obtain seeker

distributions that make fewer expected misses than n− 1 (which is the value

obtained if the seeker knows the hider’s distribution). Further, as predicted

theoretically, this expected value is lower as n increases.

3. For low-entropy hiders, it is possible to obtain substantially low numbers of

expected misses with the distribution obtained in Theorem 3.2.

50

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Entropy(H) normalised w.r.t. log
2
(n)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
E

n
tr

o
p
y
(S

*)
n
o
rm

a
lis

e
d
 w

.r
.t
.
lo

g 2
(n

)

n = 103

n = 104

n = 105

n = 106

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Entropy(H) normalised w.r.t. log
2
(n)

0

0.2

0.4

0.6

0.8

1

E
[Z

]
n
o
rm

a
lis

e
d
 w

.r
.t
 m

a
x
(E

[Z
])

n = 103

n = 104

n = 105

n = 106

Figure 3.6: Known Hider Distribution: (Left) Entropy of the hider distribution vs. En-
tropy of the seeker distribution, (Right) Entropy of the hider distribution vs. Expected
number of misses by the seeker.

Unknown hider distribution Figure 3.7 shows the expected number of misses ob-

served using Procedure 2 for varying values of n (|X|) and p, the proportion of

boxes in the H’s target partition. In all cases, α = 0.95 (that is, we want to be 95%

sure of obtaining at least one box from the H’s target partition on each iteration

of sampling in Procedure 2). We note the following:

1. The number of misses increases as the number of hidden objects (balls) de-

creases (refer supplimentary material for the theory). This is as expected.

2. The expected number of misses: (a) is substantially less than the worst case

of n − 1; (b) decreases as p increases; and (c) decreases as n increases. The

last finding may seem surprising in the first instance. However, we note that

the sample size in Procedure 2 does not change with n, but the actual number

of balls for a given abscissa is much larger for larger values of n. A simple

pigeonhole argument therefore suffices to explain the empirical result of find-

ing balls quicker as n increases. This behaviour is also consistent with the

theoretical case predicted when the hider is known (and observed empirically

in Figure 3.6).

The discussions so far in this chapter forms various aspects of relational features and

two ways of sampling relational features obtained using Inductive Logic Programming

(ILP). Next we discuss how these relational features are used to construct standard fully-

connected deep neural networks, called Deep Relational Machines (DRMs).

3.6 Application to Deep Relational Machines (DRMs)

A Deep Relational Machine (DRM [Lod13]) is a multilayer perceptrons (MLPs) con-

structed using relational features as inputs. That is, the inputs to the MLP network are

Boolean-valued feature vectors obtained using propositionalisation of relational features.

51

0.01n 0.25n
Number of hiders

0

0.02

0.04

0.06

0.08

0.1

0.12
(N

o
rm

a
liz

e
d

)
E

x
p

.
M

is
s
e

s

n = 103

n = 104

n = 105

0.01n 0.25nNumber of hiders

0

0.02

0.04

0.06

0.08

0.1

0.12

(N
o

rm
a

liz
e

d
)

E
x
p

.
M

is
s
e

s
)

n = 103

n = 104

n = 105

Figure 3.7: Unknown hider distribution, with more than 1 hider: (Left) p = 0.1, (Right)
p = 0.25. That is, the proportion of boxes in the H’s partition of the step-approximation
is known to be 10% and 25% of n. The number of balls is varied from 1% of n to 25% of
n (X-axis). The expected number of misses is on the Y-axis.

DRMs are a simple kind of neuro-symbolic architecture [BGB+17, dGL20] constructed

from relational data and symbolic domain-knowledge. Figure 3.8 shows a diagrammatic

representation of the process of constructing DRMs. There are two steps for the construc-

tion of a DRM: (a) selection of relational features and (b) construction of a multilayer

perceptron using the features selected in (a). The input to an MLP is a Boolean-valued

feature-vector representing a relational example using propositionalised encoding of re-

lational features f1, . . . , fd. This is diagrammatically shown in Figure 3.9. We now

investigate the application of the utility-based sampling developed in the previous sec-

tion.

Figure 3.8: Diagrammatic Representation of a Deep Relational Machine (DRM). The
examples shown at the bottom are the predicates in data and background knowledge.
The selection of relational features includes the feature construction and sampling steps.

52

Figure 3.9: Diagrammatic Representation of Constructing a DRM using relational fea-
tures and propositionalisation. The inputs to an MLP represent a Boolean-valued feature
vector obtained by propositionalisation of the relational features f1, . . . , fd. The param-
eters of the MLP are denoted as: W(ℓ), where ℓ denotes the layer index. In implemen-
tations, any W(ℓ) may contain an additional set of parameters called “bias weights” for
which the inputs are always 1. The output of the MLP is an a class-label obtained from
the class-probability vector of length k, where k is the number of classes.

3.7 Empirical Evaluation

Our running goal through out the thesis is to investigate the hypothesis that providing

domain-knowledge can improve the predictive performance of deep neural networks. We

now examine this in the context of DRMs that are provided with relational features

constructed for large-scale datasets for which extensive domain-knowledge that is already

available.

3.7.1 Aims

The aim of this empirical study is to evaluate the performance of DRMs that includes

domain-knowledge through the use of relational features and propositionalisation. That

is,

• We investigate whether the performance of a DRM constructed using relational

features that includes domain-knowledge is better than the performance of a DRM

constructed using relational features that does not include domain-knowledge.

• We investigate whether the utility-based sampling is better than uniform-random

53

sampling. Here we compare the performance of DRMs constructed using relational

features sampled using (a) uniform-random sampling and (b) hide-and-seek sam-

pling.

3.7.2 Materials

Data

In this chapter, and in all the research conducted in this dissertation, we focus on clas-

sification problems arising in the field of drug discovery. In particular, these datasets

represent an extensive drug evaluation effort at the National Cancer Institute (NCI:

https://www.cancer.gov/). Each dataset represents experimentally determined ef-

fectiveness of anti-cancer activity of a chemical compound against a number of cell-

lines [MOHU03]. These datasets correspond to the concentration parameter GI50, which

is the concentration that results in 50% growth inhibition of tumour cells. Some of the

datasets have been used in various data mining studies, such as in a study involving

the use of graph kernels in machine learning [RSSB05]. These datasets are also used in

the study of LRNNs [SAZ+18, Šou20]. We use 73 such anti-cancer datasets, collectively

referred to as NCI-50 datasets, for our study on the DRMs. A dataset consists of several

hundred to thousands of data instances, each representing a chemical compound in the

relational representation of atoms and bonds. Figure 3.10 summarises these datasets.

of Avg. # of Avg. # of atoms Avg. # of bonds % of

datasets instances per instance per instance positives

73 3032 24 51 0.4–0.9

Figure 3.10: A summary of the NCI-50 datasets (Total number of instances is approx.
220,000). Each instance in a dataset represents a chemical compound in atom-bond rep-
resentation, along with its associated anti-cancer activity (positive or negative). Positive
activity means the compound results in 50% growth inhibition of the tumor cells and
negative activity means otherwise.

Each instance in a dataset is represented as a set of bond facts along with its anti-

cancer activity (positive:1 or negative:0). A bond fact has an arity 6 and is of the form as

shown below. Here a chemical compound is referred to using some identity CompoundID.

Similarly, an atom i in the chemical compound is identified by its positions (a number) in

the compound (AtomiID) and types (AtomiType). The bond is referred to by BondType.

bond(CompoundID, Atom1ID, Atom2ID, Atom1Type, Atom2Type, BondType).

The target class label of a compound is represented with a class fact:

class(CompoundID, Label).

54

https://www.cancer.gov/

Therefore, a relational data instance (say, m1) in relational representation (more details

on this representation is in Appendix A) looks like the following:

class(m1,pos).

bond(m1,29,26,car,car,ar).

bond(m1,14,11,car,c3,1).

. . .

Background Knowledge

We used the background knowledge used in [VCVD02, ADL+06] with minor modifications

to avoid redundant computation and for tractable computation (essentially trading-off

completeness for efficiency). It consists of details of various atomic properties, various

chemical structures in a chemical compound, such as functional groups and rings. The

organisational levels of the background knowledge are as shown in Figure 3.11. The

definitions [GC10] of functional groups and rings which are used in this work are much

more elaborate than have been reported in the ILP literature. The definitions used

were originally developed for tackling industrial-strength problems by the biotechnology

company PharmaDM and consist of multiple hierarchies as shown in Figure 3.12 and

Figure 3.13. Many of these functional groups consists of multiple sub-functional groups

with ‘is-a’ relationship. For example, hydroxylamine is a amine group. The background

knowledge consists of information on accepting and donating groups. For example, methyl

group is an inductive donating chemical group. Inductive accepting groups are alcohol,

amine, halide, nitro group, methoxy group, acylhalide, acid car, keton, aldehyde, and

nitrile. The ring hierarchy consists of aromatic and non-aromatic rings, which are further

divided into hetero or non-hetero rings.

Figure 3.11: Levels of organisation of the background knowledge. Level 0 corresponds
to the standard atom and bond information for the molecular compounds; Level 1 refers
to the existence of various functional groups and ring structures; Level 2 knowledge is
inferred further from Level 0 and 1.

For proprietary reasons, we are not able to show the actual definitions used. However,

we are able to show the results of using the definitions of functional groups and rings.

In the predicates shown below, AtomIDs refers to a list of atoms (their positions in the

55

Figure 3.12: Hierarchy of various functional groups in the background knowledge.

compound), Length refers to the length of the list, AtomIDs and Type refers to the type

of structure (functional group or ring). For efficiency, we have restricted the background

predicate definition of ring predicates to produce rings of maximum length 8.

functional group(CompoundID, AtomIDs, Length, Type).

ring(CompoundID, RingID, AtomIDs, Length, Type).

The definitions of functional groups and rings are used to infer the presence of compos-

56

Figure 3.13: Hierarchy of various ring structures in the background knowledge.

ite structures, defined using higher-level relations. In this chapter, these relations define

the presence of fused rings, connected rings, and substructures. They are represented by

the following relations:

• has struc(CompoundID, AtomIDs, Length, Struc): A compound with CompoundID

contains a structure Struc of length Length containing AtomIDs.

• fused(CompoundID, Struc1, AtomIDs1, Struc2, AtomIDs2): A compound identified

with CompoundID contains a pair of fused structures Struc1 and Struc2 with

AtomIDs1 and AtomIDs2 respectively (that is, there is at least 1 pair of common

atoms).

• connected(CompoundID, Struc1, AtomIDs1, Struc2, AtomIDs2): A compound iden-

tified with CompoundID contains a pair of structures Struc1 and Struc2 with

AtomIDs1 and AtomIDs2 respectively that are not fused but connected by a bond

between an atom in Struc1 and an atom in Struc2.

Algorithms and Machines

The datasets and the background knowledge are written in Prolog. The relational features

are constructed and sampled using the ILP engine, Aleph [Sri01]. The sampling step is

based on the stochastic clause sampling procedure available within Aleph, for which

an extensive study is available in [Sri99a]. The propositionalisation of the relational

features is carried out using the facility availability within Aleph. We used Python based

Keras [C+15] with Tensorflow as backend [AA+15] for implementing the deep neural

networks.

All the primary experiments presented in this chapter (that is, feature construction,

learning of the deep neural networks, etc.) are conducted in Linux (Ubuntu) based Dell

57

workstation with 64GB of main memory, 16 processing cores, a single 2GB NVIDIA

Graphics Processing Unit (GPU).

3.7.3 Method

Let D be a dataset of labelled relational data-instances {(e1, y1), . . . , (eN , yN)}, where yi

is the class-label associated with an example ei. We also assume that we have access to

background knowledge B, a set of mode declarations M, a depth-limit d. Our method

for investigating the performance of DRMs is simplified below.

(1) Randomly split D into DTr (training set) and DTe (test set);

(2) Construct a DRM on DTr using propositionalisation of relational features obtained

using random sampling without background knowledge ;

(3) Construct a DRM on DTr using propositionalisation of relational features obtained

using random sampling with background knowledge ;

(4) Construct a DRM on DTr using propositionalisation of relational features obtained

using hide-and-seek sampling with background knowledge ;

(5) Obtain the predictive performance of DRM constructed in step (2) on DTe ;

(6) Obtain the predictive performance of DRM constructed in step (3) on DTe ;

(7) Obtain the predictive performance of DRM constructed in step (4) on DTe ;

(8) Compare the performance obtained in step (6) and step (5);

(9) Compare the performance obtained in step (7) and step (6).

The following additional details are relevant to the relational feature construction and

sampling steps:

• In all our experiments, “with background knowledge” (or “with domain-knowledge”)

would refer to the inclusion of predicates in the background knowledge as described

in subsection 3.7.2; and, “without background knowledge” (or “without domain-

knowledge”) would mean that the only predicates used are the bond predicates as

described in subsection 3.7.2.

• For our experiments that compares DRMs with and without background knowledge,

the bound on the number of relational features to be sampled in our simple random

sampling procedure (The input MaxDraws in Procedure 1) is set to 5000.

58

• For the hide-and-seek sampling of relational features, we assume the goodness of

features is their Laplace score (the Laplace score of a feature is npos+1
npos+nneg+2

where

npos and nneg are the number of positive and negative instances, respectively, for

which the feature is TRUE); and any feature in the top 50-percentile of scores is

acceptable as an input feature for the DRM (that is, p = 0.5). That is, target

features are to be found in the top 50-percentile of possible relational features is

taken to be a “hidden ball”. This gives a small bias towards good features, but does

not restrict the DRM from identifying better features by combination in its hidden

layers. In all experiments, α is fixed at 0.95. Therefore, the value of the sample size

(s) in Procedure 2 (Line 4) is 5. That is, the number of features sampled before

selecting a good feature is very small.

• For comparing the performance of DRMs (with hide-and-seek sampling) against

that of DRMs (with random sampling), we vary the value of MaxDraws from 50

(minimum) to 5000 (maximum). The exact values are in the results section. These

features have no more than 3 literals in the body. The resulting Boolean feature

vector representation after propositionalisation of the relational features is sparse.

The following details are relevant to the structure of a DRM:

• The number of inputs in the deep net is the number of relational features obtained by

the procedure described earlier (for the experiments conducted in this dissertation,

this number is as shown in Figure 3.10). The depth (number of layers) of a deep

neural network and size of each hidden layer remains arbitrary as there is no theory

in deep learning to guide in this aspect. However, a standard strategy to search a

“good” model structure is via cross-validation.

• Since we are dealing with sparse binary representations of input, we expect that

a neural network with a small number of hidden neurons should be sufficient to

deal with learning the input–output mapping function. Therefore, in our cross-

validation-based structure tuning, we allow networks varying from 1 to 4 hidden

layers.

• The number of neurons in each hidden layer is from a small set (here {5, 10}). The

neurons in the hidden layers are rectified linear units (ReLU: It is a scalar function

defined as ReLU(z) = max(0, z)). The output layer has a single neuron with a

sigmoid activation function.

• To mitigate issues of over-fitting, we apply dropout [SHK+14] after every layer in

the network except the output layer. The dropout rate is set to 0.5.

The following details are relevant to the construction (training) and the evaluation (test-

ing) of the DRMs:

59

• We use the Adam optimiser [KB15] with the following parameters for learning the

parameters (weights) of the DRM: The learning rate is fixed at 0.001 and the other

hyperparameters are β1 = 0.9, β2 = 0.999, ϵ = 10−8, decay = 0.

• The loss function minimised during the training of a DRM is cross-entropy between

the true class-label (encoded as an one-hot vector: represents the true probability

distribution over the class labels) and predicted class-probability vector (represents

a computed probability distribution over the class labels).

• The mini-batch size is set to 32 and the maximum number of training epochs is

1200.

• We use early-stopping [Pre98] to control overfitting the model during its training.

• The evaluation metric is accuracy of the trained model on a test set (a subset of the

whole dataset as described earlier): a randomly drawn test set consisting of 30% of

the total number of instances.

• Comparisons of the predictive performance of DRMs are conducted using Wilcoxon

signed-rank test, using the standard implementation within MATLAB.

3.7.4 Results

The results of the experiments here are in Figure 3.14 through to Figure 3.17. The

principal qualitative conclusions from these tabulations are as follows:

1. The inclusion of background predicates makes a substantial difference to DRM per-

formance, suggesting that DRMS are able to utilise domain-knowledge to improve

performance, without requiring an increase in data.

2. DRMs with hide-and-seek selection perform better than those with the simple ran-

dom sampling strategy.

Recall that our primary objective in this chapter is that inclusion of domain-knowledge

into deep neural network results in improvement of predictive performance. Here the null

hypothesis is that the predictors being compared have performance values from the same

population (that is, differences in performance will be symmetrically distributed around

0). For the actual differences observed, the p-value is tabulated in Figure 3.15 demon-

strating that this result is statistically significant (based on 71 wins in 73 different cases).

This means, the DRMs constructed from the relational features are able to utilise the

provided domain information (via the domain predicates in the background knowledge).

The performances of DRMs, constructed with uniformly sampled relational features

and utility-based sampled features (hide-and-seek), are compared with regard to different

60

Figure 3.14: Improvements in predictive performance of DRMs, when provided with
domain-knowledge through propositionalisation of relational features constructed using
simple random sampling strategy by an ILP engine. The average number of relational
features across the datasets is roughly 3800. Here X-axis represents the datasets (total 73
NCI datasets), and Y-axis shows the gain in predictive performance with respect to the
baseline. Baselines (“1”) are the models without domain-knowledge. The corresponding
quantitative comparison is shown in Figure 3.15.

Model Higher/Lower/Equal (p-value)

DRM (Rand) 71/2/0 (< 0.001)

Figure 3.15: Comparison of predictive performance of DRM (Random Sampling) with
and without domain-knowledge. The average number of relational features across the
datasets is roughly 3800. The tabulations are the number of datasets on which DRM has
higher, lower or equal predictive accuracy (obtained on a holdout set) than DRM without
domain-knowledge. Statistical significance is computed by the Wilcoxon signed-rank test.

number of features in Figure 3.17. It is evident that other than the last row, DRMs

with hide-and-seek selection perform better than those with the simple random sampling

strategy. This suggests that if the number of input features are restricted to being

small (due to limitations of hardware, or for reasons of efficiency), then hide-and-seek

sampled features would be a better choice. It is curious that with a large number of

input features (here, > 3500 or so), there is no significant statistical advantage from

hide-and-seek sampling. This may be due to the fact that the DRM has a sufficiently

diverse set of input features from uniform selection to be able to construct good features

in its intermediate hidden layers.

Some Additional Comparisons

We now turn to the question: How does DRMs perform against some recent approaches to

learning from relational data? To answer this question, we chose two different approaches:

(1) an approach that represents weighted first-order logic programs with neural networks,

61

...

Figure 3.16: Qualitative comparison of predictive performance of DRMs (Hide-
and-Seek:“HS” vs Random:“Rand”) with different number of relational features:
{50, 100, 250, 500, 1000, 2500, 3800}; The number 3800 is to match the average number
of features sampled using simple random sampling. Here X-axis represents the datasets
(total 73 NCI datasets), and Y-axis shows the gain in predictive performance with respect
to the baseline. Baseline here is the normalised performance of DRM-Rand: the “1” line.
The corresponding quantitative comparison is shown in Figure 3.17.

called LRNNs [SAZ+18], and (2) an approach that constructs deep neural networks using

propositionalisation of literals in bottom-clauses in ILP, called CILP++ [FZG14]. Note

that LRNNs do not use an explicit propositionalisation steps. CILP++ uses an explicit

propositionalisation step called the Bottom-Clause Propositionalisation or BCP [FZG14]

and the feature construction step does not involve any form of stochastic sampling. The

feature constructed by BCP are Boolean, and the representation turns out to be very

62

of Features Higher/Lower/Equal (p-value)

50 43/18/14 (< 0.01)

100 50/14/9 (< 0.01)

250 48/21/4 (< 0.01)

500 51/21/1 (< 0.01)

1000 44/25/4 (< 0.01)

2500 50/21/2 (< 0.01)

3800 39/22/1 (0.22)

Figure 3.17: Comparison of predictive performance of DRM constructed with relational
features sampled using hide-and-seek sampling strategy against DRM constructed using
relational features sampled using simple random sampling. The last row contains 3800
features to match the average number of features sampled using simple random sampling.
The tabulations are the number of datasets on which DRM(Hide-and-Seek) has higher,
lower or equal predictive accuracy (obtained on a holdout set) than DRM(Rand). Sta-
tistical significance is computed by the Wilcoxon signed-rank test.

sparse, with the dimension ranging from 18000 to 52000 across our 73 datasets. For our

experiments here, we construct MLPs using these Boolean features, a detailed description

of our experimental setup is provided in section B.1. In our tabulations, we call the MLP

model constructed with BCP features as BCP-MLP. In Figure 3.18, we provide quanti-

tative comparisons of our DRMs against LRNNs and BCP-MLP. The results show that

the DRMs, when provided with domain predicates, perform better than both these ap-

proaches. However, we adopt a conservative stand here while comparing the performance

of DRMs against LRNNs despite low p-values. First, we note that LRNNs do not have

access to a large set of domain predicates, as has been used in this work. It only uses

some definitions of n-membered rings [Šou20]. Secondly, the reader is no doubt aware of

the usual precautions when interpreting p-values obtained from multiple comparisons.

DRM Accuracy (DRM vs. other methods)

(Hide-and-Seek) Higher/Lower/Equal (p-value)

of features LRNN BCP+MLP

3800 68/5/0 (< 0.001) 69/2/2 (< 0.001)

Figure 3.18: Comparison of predictive performance of DRM against LRNN [SAZ+18]
and BCP+MLP [FZG14]. The DRM used here is the one constructed using 3800 rela-
tional features sampled using hide-and-seek sampling. The tabulations are the number
of datasets on which DRM has higher, lower or equal predictive accuracy (obtained on a
holdout set) than its counterparts. Statistical significance is computed by the Wilcoxon
signed-rank test.

63

3.7.5 Limitations of DRMs

DRMs share the principal limitations of propositionalisation approaches to ILP problems,

namely: (a) Much depends on the expressive power of the features used as input; (b)

For any language with sufficient expressive power, it is intractable to provide all features

within the language; and (c) Recursive definitions for prediction are not necessary, and

that the background knowledge is assumed to be sufficient. Of these, we set aside (c) as

being a constraint inherent to this form of modelling, and focus instead on the first two

limitations.

Practitioners of ILP will be well aware of relational composition of features by sharing

existential variables. Thus, in our running example of the trains problem, let us assume

that we have the features

C1 : ∀X (p(X)← ∃Y (has car(X, Y), short(Y)))

and

C2 : ∀X (p(X)← ∃Y (has car(X, Y), closed(Y))).

Then, depending on the data, the DRM’s internal layer may not be able to distinguish

correctly between

C : ∀X (p(X)← ∃Y (has car(X, Y), short(Y), closed(Y)))

and

C ′ : ∀X (p(X)← ∃Y, Z (has car(X, Y), has car(X,Z), short(Y), closed(Z))).

This means that to correctly capture shared relationships, we have to ensure that we

include such features at the input layer (in this example, C will have to be provided as

an input feature). Neural models that attempt explicitly to capture relationships among

variables will not suffer from this limitation (separate internal nodes would represent C

and C ′ for example, given C1 and C2 as input features).

In [SSR12], different classes of features with varying expressive power were identified.

Figure 3.19 shows a significant drop in the performance of the DRM when input features

are drawn from the class of “simple” features (all features in the unrestricted class of

features can be constructed from some combination of features from the simple class:

see [MS98, SSR12]). This suggests that DRMs require features from a fairly expressive

class: we conjecture that features provided to the DRM have to be at least from the class

of independent features identified in [SSR12] for them to have reasonable performance.

This brings in the second limitation listed above. Despite recent advances in commodity

hardware capabilities, the number of input features for the datasets here for the class of

64

independent features can range from the 10s of 1000s to the 100s of 1000s, even when

features are restricted to containing no more than 3 literals (the language constraint L),

as was done here. This is beyond the routine capabilities of the existing hardware support

for deep neural networks, and some form of selection appears inevitable, along with the

possible limitations. Current commodity hardware does not allow us to practically use

more features than a few thousand. A further limitation of DRMs is that the structural

information of a relational data instance is lost due to the propositionalisation step that

transforms a set of relational features to a flattened representation, which is an obvious

necessity for constructing MLPs.

Figure 3.19: Degradation of DRM performance when expressivity of features is decreased
from an unrestricted class to the class of relational features obtained using simple features
as discussed in [MS98].

Computational Cost

Although not a limitation directly associated with a DRM, one critical issue is that

the sampling of relational features, in particular, the hide-and-seek sampling procedure

requires a significant amount of computational cost: First, to sample a lot of relational

features to find a feature with good utility (Recall that we have to sample s boxes to find

at least one good solution in section 3.5 and that the value of s depends on α and p. To

obtain reasonably good features, the value of α should be close to 1 and p should be close

to 0. Such a setting will result in a large value of s.). This process wastes significant

computational effort in sampling and testing the features for their utility scores. Second,

the sampling procedure involves a test for subsumption equivalence that could discard the

features already selected in a final feature set. We highlight this issue with an example:

For selecting 500 relational features using hide-and-seek, the sampling procedure has

to sample approximately 2500 features and compute their utility scores. Further, with

some other settings in our hide-and-seek sampling procedure, the number of features to

be sampled could be 120, 000 to construct a DRM with good predictive performance

(That is, a DRM constructed with approximately 4000 features). A more complete

65

quantitative comparison is tabulated in Figure 3.20. Note that the numbers mentioned

here do not include the count needed due to the test for the subsumption equivalence

and the costs incurred due to the propositionalisation step. Therefore, despite being

simple machinery that incorporates domain-knowledge via propositionalisation, a DRM,

constructed using the hide-and-seek based relational features has a significantly high

computational demand. We observe a similar cost overhead for constructing MLPs with

the relational features obtained using BCP: The overhead here is due to the number of

input features required (in our experiments, this number tends to be 50000) to build a

sufficiently good deep neural network.

of

Features

α = 0.99 α = 0.95 α = 0.90

p = 0.1 p = 0.5 p = 0.1 p = 0.5 p = 0.1 p = 0.5

1000 43709 6644 28434 4322 21855 3322

2000 87418 13288 56867 8644 43709 6644

3000 131127 19932 85300 12966 65564 9966

4000 174835 26576 113733 17288 87418 13288

Figure 3.20: The minimum effort required to sample various number of relational features
using the hide-and-seek sampling. The values tabulated are the number of relational
features drawn from the large space features to obtain the number of features in the first
column.

3.8 Summary

This chapter investigated the inclusion of symbolic domain-knowledge into MLPs, using

a simple approach called propositionalisation of relational features. The resulting deep

neural network model is called a Deep Relational Machine (DRM). In the literature, the

relational features are sampled by an ILP engine using a uniform distribution, which may

not guarantee that good relational features are selected for a DRM. Here we viewed the

selection of the relational features as an instance of discrete stochastic search. In this

game, a hider (refers to a “good” relational feature, in an implementation term) hides

in one of n locations using a non-uniform hider distribution, which is unknown to the

seeker, and the seeker has to find the hider in a minimal number of misses. A natural

assumption would be that the seeker could minimise the number of misses if it uses a

distribution equal to the hider’s distribution. But, the surprising result is that this is

not the case, as evident from our theoretical and empirical observations. We extended

this study to design a sampling strategy for selecting “good” relational features, called

hide-and-seek sampling. Our hide-and-seek sampling procedure selects relational features

for a DRM with good utility-scores for a given problem. On the empirical front, the

DRMs were evaluated at a small scale: The original proposal for DRMs was evaluated

66

on 3 datasets [Lod13]. In this chapter, we conducted a large-scale evaluation of DRMs

on over 70 real-world datasets arising in the field of drug discovery. Our experiment

validates the premise that the inclusion of domain-knowledge helps in the improvement

of the predictive performance of deep neural networks. The results provided here present

substantial statistical evidence that: (a) Despite their apparent simplicity, the predictive

performance of DRMs represents substantial high-water marks for relational problems; (b)

The performance of DRMs improves significantly with the inclusion of domain-knowledge;

(c) DRMs are benefited significantly if provided with “good” features obtained by the

hide-and-seek sampling strategy, provided that the size of the input is not very large.

However, we also observed that: (d) The performance of DRMs can degrade significantly

if features are not drawn from a sufficiently expressive language; and (e) There is a

significant computational cost involved in the sampling of good relational features for a

DRM.

67

68

Chapter 4

Simplified Inclusion of Relational

Information using

Vertex-Enrichment∗

A key limitation of DRMs is that they require “flattening” any relational information–

both in the data and in domain-knowledge–by propositionalisation. As we saw in the

previous chapter, the performance of DRMs can depend quite crucially on the relational

features used as propositions. If the relational feature does not contain variable co-

references, for example, then there is no way of introducing this once the feature has

been propositionalised. In this chapter, we move to a form of DNN that is capable of

directly manipulating relational data; and introduce a first attempt at the inclusion of

relational domain-knowledge into these DNNs.

Recent advances in the area of deep learning have seen a surge in research on learning

from graph-structured data, including techniques for learning deep graph embeddings,

generalisations of convolutions in CNNs to graphs, and adopting message-passing mecha-

nisms for graph representation learning. These advances have led to new results in several

scientific problems, including the problems dealt with in this dissertation. In general, in

this chapter, we will be concerned with deep neural networks for graph-structured data,

which are known as Graph-based Neural Networks or, simply, Graph Neural Networks

(GNNs).

Although GNNs have been popularised recently (2017 and onwards), GNN-like models

are not new. These kinds of models were first proposed in [SS97, BPZ97], and later, in

[GMS05, SGT+08] the term “Graph Neural Network” or “GNN” was proposed, which

referred to the presently prevailing approach of recursive aggregation of information in

a graph. The major boost to the field of GNNs followed the introduction of graph

∗The content of this chapter is based on the following:
T. Dash, A. Srinivasan, L. Vig, “Incorporating symbolic domain knowledge into graph neural networks”,
Machine Learning, 2021; https://doi.org/10.1007/s10994-021-05966-z.

69

https://doi.org/10.1007/s10994-021-05966-z

convolution [KW17] and the notion of a graph embedding [CWPZ18, ZYZZ18]. The

last few years have witnessed numerous advancements in the field of GNNs, primarily in

the area of their implementations and applications. Two methodical and comprehensive

surveys on GNNs are available in: [ZCH+20] and [WPC+20].

Many of the developments in GNN methodologies are powerful and successful in

different real-world applications. However, there has been little or no progress in incor-

porating domain-knowledge into GNNs, and the focus is mainly on learning GNNs from

relational data, in particular, graphs alone. Instead, it is assumed that the iterative prop-

agation of messages (information) from one part of a graph to another via the GNNs’

aggregation-and-combine mechanism would result in finding out these domain-concepts

automatically, albeit inexplicable to humans [BHB+18]. We believe that incorporating

domain-concepts into GNNs in some principled manner would allow constructing power-

ful predictive models. Further, to the best of our knowledge, GNN applications to date

have been restricted to simple node-and-edge features, and have not attempted to encode

any significant domain-knowledge. In this chapter, we investigate a simplified method of

incorporating symbolic domain-knowledge while learning GNNs from relational data. In

particular, our proposal in this chapter is to enrich graphs with domain-knowledge via a

technique we call “vertex enrichment”. We assess the use of domain-knowledge in this

manner using the relational datasets and background knowledge studied in the previous

chapter. Overall, the principal contributions of the chapter are as follows: (1) To the

field of graph neural networks, this chapter presents a large-scale empirical study using

real-world datasets on the inclusion of domain-knowledge. To the best of our knowledge,

the number of graphs used and the number of relations encoding domain-knowledge are

the most extensive to date; (2) To the field of neuro-symbolic modelling, the technique

of vertex-enrichment described in this chapter provides a simple but an effective way of

incorporating symbolic relations into graph-based neural networks.

4.1 Graph Neural Networks (GNNs)

GNNs are primarily developed for learning from data represented as graphs. In this disser-

tation, our focus will be on GNNs concerned with graph classification. For completeness

and clarity of presentation, we provide below the basics of graphs, such as directed and

undirected graphs, the role of a neighbourhood function in a graph, and labelled graphs.

Further, our examples in this chapter will be about molecular graphs; however, this is

just for the convenience of explanation, and our proposed technique is applicable to many

other scientific areas, in general.

Definition 4.1 (Graphs). A graph G is a pair (V,E) where V is a set of vertices, E

is a set of edges and a subset of V × V . A graph is said to be undirected if for every

70

(vi, vj) ∈ E, we have (vj, vi) ∈ E.

In this chapter, we will be concerned with undirected graphs. We note that for such

graphs, E can be represented more compactly as a set consisting of 1- or 2-element subsets

of V . We will return to this later, as we extend the consideration to hypergraphs. For

molecular graphs, of the kind considered here, self-loops do not occur.

Example 4.1 (Molecules as graphs). A benzene ring (shown below) can be represented as

a graph, in which vertices correspond to atoms and edges correspond to bonds [MW+97].

The graph-representation of the molecule on the left is (V,E) where

V = {1, 2, 3, 4, 5, 6},

E = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4), (5, 6), (6, 5), (6, 1), (1, 6)}.

We will need the concept of the neighbourhood of a vertex in an undirected graph. In this

chapter, by “graph” we will mean an undirected graph.

Definition 4.2 (Neighbourhood). Given a graph G = (V,E), a neighbourhood function

σ is a is a map from V to 2V defined as σ(v) = {vi ∈ V : (v, vi) ∈ E}.

Example 4.2. For the graph in Example 4.1, we get σ(1) = {2, 6}, σ(2) = {1, 3}, . . . ,
σ(6) = {1, 5}.

GNNs are concerned with labelled undirected graphs, that is, each vertex (and each

edge) of a graph is associated with a labelling, which refers to some properties associated

with that that vertex or that edge. In GNN terminology, a vertex-label or an edge-label

is called a “message”.

Definition 4.3 (Graph Labellings). Let V be a set of vertex labels and E be a set of

edge labels. Then a vertex-labelling of a graph G = (V,E) is a function ψ : V → 2V and

an edge-labelling is a function ϵ : E → 2E . We will denote a labelled graph by the tuple

(V,E, σ, ψ, ϵ).

In the definition above, we do not commit to any specific data structure that should

be used to implement the label set. This could be, for example, a Boolean-valued array

of size |V|.

71

Example 4.3. The vertex labels of the graph given in Example 4.1 can be the atom-types

(Carbon, C), and edge labels can be the bond-types (single bond: 1, double bond: 2).

The label for the vertex 1 is ψ(1) = · · · = ψ(6) = {C}. The labelling for the edges are

ϵ((1, 2)) = ϵ((2, 1)) = {2}, ϵ((2, 3)) = ϵ((3, 2)) = {1} and so on.

Although not evident in this example, vertex- and edge-labels can have more than

one element (hence the mapping to 2V and 2E). This will be necessary later. We will use

the term graph interchangeably to denote the tuple (V,E) or the tuple (V,E, σ, ψ, ϵ).

The defining property of a GNN is that it uses some form of neural message-passing

in which messages (vertex- or edge-labels) are exchanged between vertices of a graph and

updated using a neural network [GSR+17]. The message-passing process is conceptually

implemented by using a function called Relabel. This involves an iterative update of the

vertex- (and edge-) labels. The output of the function is a relabelled graph, where the

vertex- (and edge-) labels are updated.

Definition 4.4 (Relabel). Given a graph (V,E, σ, ψ, ϵ). Relabel is a function that returns

a graph (V,E, σ, ψ′, ϵ′), where the functions ψ′ and ϵ′ may be different to ψ and ϵ.

Since we are interested in classifying graphs, that is, given a set of class labels Y , we want

to construct a function that maps a graph of the form (V,E, σ, ψ, ϵ) to a class-label in

Y . This requires a graph-level representation (also called a graph-embedding [Ham20]),

meaning, every labelled graph is encoded as a d-dimensional real-valued feature vector.

This is conceptually implemented using a function called V ec that vectorises a relabelled

graph. This feature vector is then input to a (multi-layered) neural network, denoted by

a function NN that maps the feature vector to a set of class-labels. The whole pipeline

of graph classification is shown in Figure 4.1. Many GNN implementations, including

the ones used in this dissertation, assume the graph to be undirected and ignore the

edge-labelling in ϵ.

Definition 4.5 (Vec). Let G denote the set of graph-tuples of the form (V,E, σ, ψ, ϵ). For

d ≥ 1 and a function V ec : G → Rd, a vectorisation of the graph is V ec((V,E, σ, ψ, ϵ)).

Definition 4.6 (GNN). Let NN : Rd → Y denote a neural network that maps a

real-valued vector to a set of class-labels. Given a G = (V,E, σ, ψ, ϵ), GNN(G) =

NN(V ec(Relabel(G))).

4.1.1 General working principle of GNNs

Let G = (V,E, σ, ψ, ϵ) be a labelled graph as described above. Let Xv denote a vector that

represents the initial labelling (ψ) of a vertex v ∈ V . That is, Xv is the feature-vector asso-

ciated with the vertex v. The relabelling function Relabel : (V,E, σ, ψ, ϵ) 7→ (V,E, σ, ψ′, ϵ)

72

Figure 4.1: A diagrammatic representation of graph classification using a GNN. Graphs
are of tuples of the form (V,E, σ, ψ, ϵ), where V is a set of vertices; E is a set of edges; σ
is some neighbourhood function; ψ is a vertex-labelling; and ϵ is an edge-labelling. Often
σ is left out, and derived from the edges in E.

(iteratively) updates the labelling of the vertices in G. This process involves two proce-

dures: (a) AGGREGATE: for every vertex, this procedure aggregates the information from

neighboring vertices; and (b) COMBINE: this procedure updates the label of a vertex by

combining its present label with its neighbors’, as obtained by AGGREGATE procedure.

Mathematically, at some iteration k, the labelling of a vertex v (denoted by hv) is updated

as follows:

a(k)v = AGGREGATE(k)
({
h(k−1)
u : u ∈ N (v)

})
,

h(k)v = COMBINE(k)
(
h(k−1)
v , a(k)v

)
,

where N (v) denotes the set of vertices adjacent to v. Initially (at k = 0), h
(0)
v = Xv.

The graph vectorisation function V ec : (V,E, σ, ψ′, ϵ) 7→ Rd constructs a vector rep-

resentation of the entire graph (also called a graph embedding). This step is carried

out after the representations of all the vertices are relabelled by some iterations over

AGGREGATE and COMBINE. The vectorised representation of an entire graph, denoted

by G here, can be obtained using a READOUT procedure that aggregates vertex features

from the final iteration (k = K):

hG = READOUT
({
h(K)
v | v ∈ G

})
In practice, AGGREGATE and COMBINE procedures are implemented using graph

convolution and pooling operations. The READOUT procedure is usually implemented

using a global or hierarchical pooling operation. Variants of GNNs result from modifi-

cations to these 3 procedures: AGGREGATE, COMBINE and READOUT. The functional

forms of AGGREGATE, COMBINE and READOUT are provided in an appendix section.

Below we provide some brief notes on some GNN variants that are implemented in our

experiments.

4.1.2 Note on GNN variants

We focus mainly on the following variants of the AGGREGATE-COMBINE procedures:

1. Spectral graph convolution, GCN [KW17]: This is a spectral method for graph

convolution that uses convolutional aggregator. This is a simple and well-behaved

73

layer-wise propagation rule for neural network models which operate directly on

graphs.

2. Multistage graph convolution, k-GNN [MRF+19]: This convolution method can

perform convolution operations using multiple-sized neighbourhoods (the authors

call this “higher order” graph convolution).

3. Graph convolution with attention, GAT [VCC+18]: This is a spatial method of

graph convolution that uses an “attention” mechanism, that estimates the impor-

tance of vertices in the neighbourhood of a vertex.

4. Sample-and-aggregate graph convolution, GraphSAGE [HYL17]: Here the convolu-

tion procedure samples from a distribution that is constructed from feature-vectors

of vertices in the neighbourhood of a vertex.

5. Graph convolution with auto-regressive moving average, ARMA [BGLA21]: This

is a convolution method that employs a polynomial function of the feature-vectors

in the neighbourhood of a vertex.

In our implementations that we will describe later, in addition to the graph convolu-

tion methods mentioned above, we use a graph-pooling step that applies down-sampling

to graphs. This operation allows to obtain refined graph representations at each layer.

Like in convolutional neural networks, a (graph-)pooling operation follows a (graph-

)convolution operation. The primary aim of including a graph pooling operation after

each graph convolution is that this operation can reduce the graph representation while

ideally preserving important structural information. In the research conducted in this

dissertation, we use a popular structural-attention based graph pooling method [LLK19].

To implement the READOUT procedure, we use hierarchical graph-pooling method

proposed by [CVJ+18]. Therefore, a GNN variant for us will refer to a GNN constructed

with one of the above mentioned graph-convolution operators, the graph-pooling operator

and the hierarchical operator. A detailed conceptual and mathematical description of

these convolution and pooling operators are provided in Appendix A.

4.2 Inclusion of n-ary relations into GNNs by En-

riching Vertex-Labels

GNNs, as we have described them so far, deal with node- and edge-labels in an undirected

graph, in which edges are sets of vertex-pairs. That is, the edges represent a symmetric

binary relation. However, for many real-world problems—including the ones considered

in this chapter—we have access to domain-knowledge which relate more than just pairs

74

of vertices. For example, if a molecule is represented as a graph (with atoms as vertices,

and an edge denoting a bond between a pair of vertices), then a benzene-ring is a relation

amongst 6 distinct vertices, with some specific constraints on the vertices and edges.

Here, we will consider domain-knowledge to be a set of relations, each of which can be

expressed as a hypergraph.

Definition 4.7 (Hypergraphs). A hypergraph H is the pair (V,E ′), where V is a set of

vertices and E ′ is a non-empty subset of 2V . Each element of E ′ is called a hyperedge.

Example 4.4. A hypergraph of the molecular graph given in Example 4.1 can be

H = ({1, 2, 3, 4, 5, 6}, {{1, 2}, {3, 4, 5, 6}, {2, 4, 5}, {1, 2, 3, 4, 5, 6}}).

We note that since hyperedges are sets, there is no distinction between permutations of

vertices in a hyperedge. So, as defined here, we will take hyperedges as being undirected.

Hypergraph labellings can be defined similarly as before, using a pair of functions for

vertex- and edge-labels. We will reuse the notation ψ and ϵ for these functions, with

annotations to clarify what is meant. The neighboorhood relation σ is left unspecified

here (one obvious definition is σ(vi) = {vj : h ∈ E ′, {vi, vj} ⊆ h}). In this chapter, we

are interested in n-ary relations that can be expressed as hypergraphs.

Definition 4.8 (n-ary Relation as a Labelled Hypergraph). A n-ary relation R defined

over vertices of a graph G = (V,E) is a hypergraph H = (V,E ′), and every hyperedge

h ∈ E ′ has n elements from V . We will denote this as R(G) = H. Let ψG denote a

vertex-labelling over G and R/n denote the predicate-symbol for R. With some abuse of

notation, the vertex-labelling function for R(G) = H = (V,E ′) is as follows:

ψH(v) =

 ψG(v) ∪ {R/n} if ∃h ∈ E ′s.t. v ∈ h

∅ otherwise

and the hyperedge-labelling function is

ϵH(h) = {R/n} (h ∈ E ′).

That is, the vertex-labelling of a vertex v in the hypergraph H is a set containing the

existing vertex-label of v in G augmented by the predicate-symbol R/n vertex-label.

75

Example 4.5. Consider a relation for a benzene ring:

benzene(a1, a2, a3, a4, a5, a6)←

cycle(a1, a2, a3, a4, a5, a6) ∧

aromatic(a1, a2, a3, a4, a5, a6).

One possible vertex-labelling is

ψH(1) = · · · = ψH(6) = {C, benzene/6}

(here, C denotes “carbon”). A hyperedge-labelling may contain:

ϵH({1, 2, 3, 4, 5, 6}) = {benzene/6}.

The extension to multiple relations, not all of the same arity, is straightforward.

Definition 4.9 (Multiple Relations as a Labelled Hypergraph). Let R1, . . . , Rk be rela-

tions defined on vertices of a graph G = (V,E), s.t. Ri(G) = (V,Ei
′). Then

⋃k
i=1Ri(G)

is the hypergraph H = (V,E ′) where E ′ =
⋃k

i=1Ei
′. The corresponding labelling functions

are

ψH(v) =
k⋃

i=1

ψHi
(v)

and

ϵH(v) =
k⋃

i=1

ϵHi
(v).

Example 4.6. Consider the following molecular graph with two relations: benzene/6

and pyrrole/5.

One possible vertex-labelling for this graph is

ψH(1) = ψH(4) = ψH(5) = ψH(6) = {C, benzene/6}

ψH(2) = ψH(3) = {C, benzene/6, pyrrole/5}

ψH(7) = {N, pyrrole/5}

ψH(8) = ψH(9) = {C, pyrrole/5}

76

and a hyperedge-labelling is

ϵH({1, 2, 3, 4, 5, 6}) = {benzene/6}

ϵH({2, 7, 8, 9, 3}) = {pyrrole/5}.

In principle, provided we are able to define a neighbourhood function σ for hypergraphs,

the definition of GNNs in Defn. 4.6 does not change. We would however like to use

one of the standard GNN implementations described in the previous section, which re-

stricts graphs with 2-vertex edges, and edge-labels to singleton sets. With some loss of

information, we extract a suitable graph from a hypergraph.

Definition 4.10 (Vertex-Enriched Graphs). Let G = (V,E) be a graph, with neighbour-

hood function σ, vertex-labelling function ψ, and edge-labelling function ϵ. Here, E is a

subset of V × V . Let R = {R1, . . . , Rk} be a set of relations defined on G, and
⋃
Ri(G)

be the hypergraph H = (V,E ′) with vertex-labelling function ψ′ as in Defn. 4.9. Then G′

= (V,E, σ, ψ′, ϵ) is called a vertex-enriched form of G = (V,E, σ, ψ, ϵ). We denote this

by V E(G,R) = G′.

Example 4.7. The molecular graph G for Example 4.6 is

G = ({1, 2, 3, 4, 5, 6, 7, 8, 9}, {(1, 2), (2, 1), . . . , (1, 6), (6, 1), (2, 7), (7, 2), . . . , (9, 3)(3, 9)}).

A vertex-labelling of G is

ψ(1) = · · · = ψ(6) = ψ(8) = ψ(9) = {C}

ψ(7) = {N}

The vertex-labelling of the vertex-enriched graph G′, after the inclusion of the relations

in Example 4.6 is:

ψ′(1) = ψ′(4) = ψ′(5) = ψ′(6) = {C, benzene/6}

ψ′(2) = ψ′(3) = {C, benzene/6, pyrrole/5}

ψ′(7) = {N, pyrrole/5}

ψ′(8) = ψ′(9) = {C, pyrrole/5}.

The edge-labelling and neighborhood functions do not change after relation enrichment.

The vertex-enriched graph thus extends the vertex-labelling of a graph G, with the vertex-

labels from the hypergraph H obtained from relations R1, . . . , Rk defined on G. Proce-

dure 3 provides a set of formal steps to enrich a graph G given a set of relations R.

77

Procedure 3 requires identification of subgraphs of the original graph. That is, for every

relation Ri ∈ R, the corresponding hyperedge Hi is a subset of vertices {v1, . . . , vn} ∈ V ,

such that (v1, . . . , vn) ∈ Ri. This step requires the identification of all subsets of vertices

of the graph constituting hyperedge as above. For a graph (V,E), this can, in the worst

case require an examination of
(|V |

n

)
combinations. Therefore, for arbitrary sized graphs

and subgraphs, this is computationally hard. In practice, we will be forced to impose

bounds on the size of Vs and on the size of the subgraph.

We note that the process of vertex-enrichment is a simplification of the full relational

information available. For example, in the example above, if an atom (represented by

a vertex in the molecular graph) is part of more than 1 benzene ring, then its vertex-

enrichment will only contain a single entry for benzene/6, indicating that it is part of 1

or more benzene rings. We discuss these limitations in detail later.

Procedure 3 Vertex-Enrichment of a graph G, given a set of relations R. The new label
of a vertex includes all the relations of which the vertex is part. The procedure takes as
input a graph G, a set of relations R, and returns a vertex-enriched graph G′.

1: procedure EnrichGraph(G = (V,E, σ, ψ, ϵ), R = {R1, . . . , Rk})
2: Let ψ′ := ψ
3: for all Ri ∈ R do
4: Let Ri ⊆ V n

5: Hi = {{v1, . . . , vn} : (v1, . . . , vn) ∈ Ri}
6: Let Vs =

⋃
Hj∈Hi

Hj

7: for all vj ∈ Vs do
8: ψ′(vj) := ψ′(vj) ∪ {Ri/n}
9: return G′ = (V,E, σ, ψ′, ϵ)

The vertex-enriched graph obtained here are immediately suitable for the GNN im-

plementations we consider in this chapter: The vertex-labels of a graph are sets and a

GNN implementation cannot handle sets. We provide a simple technique to transform

these graphs into a form suitable for GNN implementations.

4.2.1 Vertex-Enriched GNNs

For use by a GNN, a vertex-label in a labelled graph needs to be transformed to a

fixed-length feature-vector. In our implementations of GNN variants, each vertex-label is

transformed to a fixed-length multi-hot Boolean-valued vector associated with the vertex.

We define a function V ectorise to do this transformation.

Definition 4.11 (Vectorisation). Let G be a set of vertex-enriched graphs, where each

graph G′ is of the form (V,E, σ, ψ′, ϵ). Assume a set of domain relations, denoted by R,
available in background knowledge B. Let R consist of k relations: R1, . . . , Rk. We define

78

a label-vectorisation function ψ′′ : V × {1, . . . , k} → {0, 1} as

ψ′′(v, i) =

1 if Ri ∈ ψ′(v)

0 otherwise

Thus, the vectorisation of the label of a vertex v ∈ V is (ψ′′(v, 1), . . . , ψ′′(v, k)). Then,

the graph G′′ = (V,E, σ, ψ′′, ϵ) is the vectorised form of G′ and is denoted as G′′ =

V ectorise(G′,R).

Definition 4.12 (Vertex-Enriched GNN). Let G = (V,E, σ, ψ, ϵ), and V ectorise, Relabel,

V ec and NN be as before. Then, a Vertex-enriched GNN is

V EGNN(G) = NN(V ec(Relabel(V ectorise(V E(G,R),R)))).

Example 4.8. Let’s consider the example of a molecular graph G given given in Exam-

ple 4.6 and its corresponding vertex-enriched graph G′ in Example 4.7. For this example,

let’s assume R = {C,N,O, benzene/6, furan/5, pyrrole/5}. The vectorised form of G′

will have vertices associated with the following vectors of length 6:

v ψ′′(v)⊤

1 [1, 0, 0, 1, 0, 0]

2 [1, 0, 0, 1, 0, 1]

3 [1, 0, 0, 1, 0, 1]

4 [1, 0, 0, 1, 0, 0]

5 [1, 0, 0, 1, 0, 0]

6 [1, 0, 0, 1, 0, 0]

7 [0, 1, 0, 0, 0, 1]

8 [1, 0, 0, 0, 0, 1]

9 [1, 0, 0, 0, 0, 1]

Notice that the atom types such as carbon, nitrogen, oxygen, denoted by C, N , O, respec-

tively, are treated as relations with arity 0.

Procedure 4 and Procedure 5 are two simple procedures to construct and evaluate

VEGNNs. These procedures assumes two sub-procedures: TrainGNN, that trains a

standard GNN using a set of labelled graph-instances; and Evaluate, that computes

the predictive performance of a trained model.

79

Procedure 4 Procedure to construct a VEGNN model. The procedure takes as inputs:
a set of of labelled data-instances DTr = {(g1, y1), . . . , (gN , yN)}, where gi is the graph-
representation of a relational data-instance and yi is a class-label associated with gi; a
set of domain-relations R; a set of hyperparameters P ; and returns a VEGNN model.

1: procedure TrainVEGNN(DTr,R)
2: D′

Tr = {(g′i, yi) : (gi, yi) ∈ DTr and g′i = V E(gi,R}
3: D′′

Tr = {(g′′i , yi) : (g′i, yi) ∈ D′
Tr and g′′i = V ectorise(g′i,R)}

4: Let V EGNN = TrainGNN(D′′
Tr, P)

5: return V EGNN

Procedure 5 Procedure to test a trained VEGNN model. The procedure takes
as inputs: a trained model V EGNN ; a set of of labelled data-instances DTe =
{(g1, y1), . . . , (gM , yM)}; a set of domain-relations R; and returns the predictive per-
formance of V EGNN .

1: procedure TestVEGNN(DTe,R, P)
2: D′

Te = {(g′i, yi) : (gi, yi) ∈ DTe and g′i = V E(gi,R}
3: D′′

Te = {(g′′i , yi) : (g′i, yi) ∈ D′
Te and g′′i = V ectorise(g′i,R)}

4: Let ŷ = {ŷi = V EGNN(g′′i) : (g′′i , ·) ∈ D′′
Te}

5: Let perf = Evaluate(y, ŷ) ▷ where y = {yi : (g′′i , yi) ∈ D′′
te}

6: retun perf

4.3 Empirical Evaluation

4.3.1 Aims

The aim of this empirical study is to evaluate the performance of VEGNNs that includes

domain-knowledge using the vertex-enrichment technique. That is,

• We investigate whether the performance of a VEGNN that includes domain-knowledge

using vertex-enrichment is better than the performance of a GNN that does not in-

clude domain-knowledge.

4.3.2 Materials

The datasets and background knowledge used here are the same 73 classification problems

used in the previous chapter (see section 3.7.2 and section 3.7.2). Here we only describe

changes in Materials specific to the experiments in this chapter.

Algorithms and Machines

The data and background knowledge are written in Prolog. A Prolog program is used to

extract the set of vertices for which a domain-relation is true. We use YAP compiler for

execution of this logic program. All the deep neural network experiments are conducted

in a Python environment. The GNN models are implemented by using the PyTorch

80

Geometric library [FL19], which is a popular geometric deep learning extension for Py-

Torch [PGM+19] and it provides graph pre-processing routines and makes the definition

of graph convolution easier to implement.

For all the experiments, we use a machine with Ubuntu (16.04 LTS) operating system,

and hardware configuration such as: 64GB of main memory, 16-core Intel Xeon processor,

a NVIDIA P4000 graphics processor with 8GB of video memory.

4.3.3 Method

In all experiments, we refer to GNN variants as GNN1,...,5 and the corresponding vertex-

enriched versions are V EGNN1,...,5. For the methodology outlined below, let D be a set of

labelled data-instances represented as graphs: {(g1, y1), . . . , (gN , yN)} where yi is a class-

label associated with the graph gi. For constructing the VEGNNs, we assume that we have

access to: (a) a set of domain relations R, (b) implementations of the GNN variants, and

(c) the procedures TrainVEGNN and TestVEGNN as described in Procedure 4 and

Procedure 5, respectively. Our method for investigating the performance of V EGNNs is

straightforward:

(1) Randomly split D into DTr (train-set) and DTe (test-set);

(2) Construct a GNN model using DTr (GNN without the domain-relations in R). Let

GNN i be the resulting GNN model, where i = 1, . . . , 5 refers the GNN variant;

(3) Construct a VEGNN model using DTr (GNN with the domain-relations in R). Let

V EGNN i be the resulting VEGNN model;

(4) Obtain the predictive performance of the GNN model constructed in Step (2) on

DTe;

(5) Obtain the predictive performance of the VEGNN model constructed in Step (3)

on DTe;

(6) Compare the predictive performance of V EGNN i against that of GNN i (i =

1, . . . , 5).

The following additional details are relevant:

• We have used a 70:30 train-test split for each of the datasets. 10% of the train-set

is used as a validation set for hyperparameter tuning.

• The relations in R are those described in section 3.7.2.

81

• The general workflow involved in GNNs is described in section 4.1. A diagram of the

components involved in implementing that workflow for constructing a VEGNN is

shown in Figure 4.2. As shown in the figure, a GNN in our implementations consists

of three graph convolution blocks and three graph pooling blocks. The convolution

and pooling blocks interleave each other (that is, C-P-C-P-C-P).

Figure 4.2: Components involved in implementing the workflow in section 4.1 for VEGNN
models. The input is the vectorised representation of a vertex-enriched graph, denoted
here as V E-Graph(g) for an graph data-instance g. The blocks ‘Conv’ and ‘Pool’ refer to
the graph-convolution and graph-pooling operations, respectively. The ‘Readout’ opera-
tion constructs a graph representation by accumulating information from all the vertex
in the graph obtained after the pooling operation. The final graph representation is ob-
tained in the READOUT block by an element-wise sum (shown as ⊕) of the individual
graph-representations obtained after each AGGREGATE-COMBINE block. MLP stands
for Multilayer Perceptron.

• The convolution blocks can be of one of the five variants, discussed earlier in sub-

section 4.1.2.

• The graph pooling block uses self-attention pooling [LLK19] with a pooling ratio

of 0.5. We use the graph-convolution formula proposed in [KW17] for calculating

the self-attention scores used in the self-attention pooling.

• Due to the large number of experiments (resulting from multiple datasets and mul-

tiple GNN variants), the hyperparameters in the convolution blocks are set to the

default values within the PyTorch Geometric library [FL19].

• We use a hierarchical pooling architecture that uses the readout mechanism pro-

posed by Cangea et al. [CVJ+18]. The readout block aggregates node features to

produce a fixed size intermediate representation for the graph. The final fixed-

size representation for the graph is obtained by element-wise addition of the three

readout representations.

• The representation length (2m) is determined by using a validation-based approach.

The parameter grid for m is: {8, 128}, representing a small and a large embedding,

respectively.

82

• The final representation is then fed as input to a 3-layered MLP. We use a dropout

layer with a fixed dropout rate of 0.5 after the first layer of MLP.

• The input layer of the MLP contains 2m units, followed by two hidden layers with

m units and ⌊m/2⌋ units, respectively. The activation function used in the hidden

layers is relu. The output layer uses logsoftmax activation.

• The loss function used is the negative log-likelihood between the target class-labels

and the predictions from the model.

• We denote the V EGNN variants as: V EGNN1,...,5 based on the type of graph

convolution method used.

• We use the Adam optimiser [KB15] for training the VEGNNs (V EGNN1,...,5). The

learning rate is 0.0005, weight decay parameter is 0.0001, the momentum factors

are set to the default values of (β1, β2) = (0.9, 0.999).

• The maximum number of training epochs is 1000. The batch size is 128.

• We use an early-stopping mechanism [Pre98] to avoid overfitting during training.

The resulting model is then saved and can be used for evaluation on the independent

test-set (DTe). The patience period for early-stopping is fixed at 50.

• The predictive performance of a VEGNN model refers to its predictive accuracy on

the independent test-set.

• Comparison of performance is done using the Wilcoxon signed-rank test, using the

standard implementation within MATLAB (R218b).

4.3.4 Results

The main results from the experiments are shown qualitatively in Figure 4.3. The princi-

pal finding from the tabulations is that inclusion of domain-knowledge into GNNs (that

is, the use of vertex-enriched GNNs) results in an improvement in predictive accuracy for

all variants of GNN.

We examine the results in more detail: From Figure 4.3, it is evident that the per-

formance of graph-based networks improves with the inclusion of domain-knowledge. A

quantitative tabulation of wins, losses and draws is in Figure 4.4. These results again

provide sufficient grounds to answer positively the primary research question addressed

in this dissertation, namely: do DNNs (here, represented by GNNs) benefit from the

inclusion of domain-knowledge?

83

(a) GNN1 (median gain ≈ 3%) (b) GNN2 (median gain ≈ 3%)

(c) GNN3 (median gain ≈ 4%) (d) GNN4 (median gain ≈ 3%)

(e) GNN5 (median gain ≈ 2%)

Figure 4.3: Qualitative comparison of predictive performance of VEGNNs against Base-
line (that is, GNN variants without access to domain-relations). Performance refers to
estimates of predictive accuracy (obtained on a holdout set), and all performances are
normalised against that of baseline performance (taken as 1). No significance should be
attached to the line joining the data points: this is only for visual clarity.

Some Additional Comparisons

Although not of direct relevance to the primary research conjecture of this dissertation

(that is, the inclusion of domain-knowledge can significantly improve the performance

of DNNs), it is nevertheless useful to ask how the two approaches we have investigated

so far compare against each other. To answer this question, we perform a quantitative

comparison between VEGNNs and Deep Relational Machines (DRMs) constructed using

propositionalisation of relational features sampled using our proposed hide-and-seek sam-

pling strategy in Chapter 3. We provide a tabulation of this comparison in Figure 4.5.

The finding suggests that DRMs can perform at the same or higher level of predictive

performance as VEGNNs. At the outset, it may seem easy to conclude that simple ma-

chinery like DRMs are better than VEGNNs for the inclusion of domain-knowledge, we

84

GNN Accuracy (V EGNN vs. GNN)

Variant Higher/Lower/Equal (p-value)

GNN1 48/14/11 (< 0.001)

GNN2 48/19/6 (0.005)

GNN3 53/11/9 (< 0.001)

GNN4 54/12/7 (< 0.001)

GNN5 43/19/11 (0.002)

Figure 4.4: Quantitative comparison of predictive performance of V EGNNs against
GNNs. Here GNN refers to the graph-based neural network without domain-knowledge,
and V EGNN refers to the network vertex-enriched with the generic domain-knowledge
described in section 3.7.2. The tabulations are the number of datasets on which V EGNN
has higher, lower or equal predictive accuracy on a holdout-set. Statistical significance is
assessed by the Wilcoxon signed-rank test.

highlight some key issues that are not apparent from these tabulations: (1) DRMs need to

be provided with a sufficient number of relational features (here, 250) to match the same

level of performance as a VEGNN; (2) DRMs need to be provided with an expressive

set of relational features to reach the same level of performance as a VEGNN; (3) For

a DRM, there is significant computational effort is required to draw these 250 features

using sampling. As discussed in Chapter 3, the sampling procedure incurs a huge com-

putational cost to select a set of 250 features where selecting just one relational feature

requires: sampling a lot more than one feature, evaluating them for their utilities, and

discarding the features with bad utilities. Whereas VEGNNs do not involve any such

sampling step and therefore the computational cost remains relatively minimal.

We further compare VEGNNs against another propositionalisation based technique

for inclusion of domain-knowledge, called BCP [FZG14] that we investigated in Chapter 3.

A comparison of VEGNNs against MLPs constructed with BCP features are provided in

Figure 4.6. The results here reaffirm that though propositionalisation based techniques

are simple, and they require significant computational overhead to perform well: In this

case, the number of input BCP features for an MLP ranges from 18000 to 52000 (Refer

section 3.7 for more details). This kind of number leads to more complex MLPs that

require huge training effort.

4.3.5 Limitations of VEGNNs

So far we have studied how vertex-enrichment allows relations in the background knowl-

edge to be incorporated into a graph neural network. Although this approach is effective

in terms of improving the predictive performance of GNNs, it comes with a very basic

limitation. Let us examine the following molecule (a graph data-instance) with 2 fused

benzene rings and its corresponding vertex-enriched molecular graph in Figure 4.7. In

85

Accuracy (V EGNN vs. DRM)

GNN Higher/Lower/Equal (p-value)

Variant |R′| = 50 |R′| = 100 |R′| = 250

GNN1 59/13/1 (< 0.001) 50/22/1 (< 0.001) 21/52/0 (< 0.001)

GNN2 49/23/1 (< 0.01) 39/33/1 (0.81) 19/54/0 (< 0.001)

GNN3 54/18/1 (< 0.001) 44/28/1 (0.05) 14/59/0 (< 0.001)

GNN4 59/13/1 (< 0.001) 52/20/1 (< 0.001) 23/50/0 (< 0.001)

GNN5 53/19/1 (< 0.001) 42/30/1 (0.06) 17/56/0 (< 0.001)

Figure 4.5: Quantitative comparison of predictive performance of VEGNNs against
DRMs. Here V EGNN denotes the vertex-enriched GNN with R, and DRM denotes
the Deep Relational Machine constructed using propositionalisation of relational features.
The relational features for a DRM are sampled using the hide-and-seek sampling strat-
egy proposed in Chapter 3. The set of the hide-and-seek features is denoted by R′. The
comparative performance of VEGNNs against DRMs starts worsening after |R′| = 500,
which are not shown here. The tabulations are the number of datasets on which V EGNN
has higher, lower or equal predictive accuracy on a holdout-set. Statistical significance is
assessed by the Wilcoxon signed-rank test.

GNN Accuracy (V EGNN vs. BCP+MLP)

Variant Higher/Lower/Equal (p-value)

GNN1 51/21/1 (< 0.001)

GNN2 46/26/1 (0.08)

GNN3 48/24/1 (0.003)

GNN4 54/18/1 (< 0.001)

GNN5 47/25/1 (0.005)

Figure 4.6: Quantitative comparison of predictive performance of V EGNNs against that
of MLPs constructed using BCP features [FZG14]. The tabulations are the number of
datasets on which V EGNN has higher, lower or equal predictive accuracy on a holdout-
set. Statistical significance is assessed by the Wilcoxon signed-rank test.

the graph it is clear that vertices v4 and v5 are members of two different benzene rings,

however the vertex-enrichment is not able to capture this fact automatically. That is,

given the vertex-labels alone we may not be able to deduce that these two vertices are

members of two different benzene rings.

The limitation of vertex-enrichment stated above is more apparent in the following

molecular graph (highlighting only the vertex-labels for two vertices) in Figure 4.8. The

vertex v4 is a member of three different benzene rings and as a result two different fused

rings, which has not been captured by the proposed vertex-enrichment technique. We

could, therefore, say that vertex-enrichment is a simplification method for the inclusion

of domain-knowledge into GNNs. Here we prefer the word “simplification” instead of

86

Figure 4.7: Figure showing (a) a molecule with 2 fused benzene rings, (b) its correspond-
ing molecular graph with vertices enriched with domain-relations.

“approximation” for an obvious reason that multiple occurrences of any n-ary domain

relation for a vertex in a graph is simplified and shown as a single occurrence.

Figure 4.8: Figure highlighting a limitation of the vertex-enrichment technique for a
molecular graph.

4.4 Summary

In this chapter, we proposed a simplified technique, called vertex-enrichment, for inclusion

of domain-knowledge into graph-based neural networks (or GNNs). The resulting GNNs

are called Vertex-Enriched GNNs or VEGNNs. We performed a large-scale evaluation of

VEGNNs and compared their predictive performance against GNNs that do not include

domain-knowledge. The primary results here clearly show the benefit of having mecha-

nisms to incorporate domain-knowledge into GNNs. To the best of our knowledge, the

experiments in this chapter constitute some of the most extensive applications of GNNs

to large-scale real-world scientific data arising in the domain of drug-discovery. Further,

we studied that vertex-enrichment, being a simplification technique to incorporate all the

domain-relations available in the background knowledge, may limit the expressiveness of

a VEGNNs.

87

88

Chapter 5

Complete Inclusion of Relational

Information using Inverse

Entailment∗

At the end of the previous chapter, we showed that using vertex-enrichment as a technique

for inclusion of domain-knowledge results in a loss of information. For example, a vertex

in a vertex-enriched graph does not encode information that it is a part of multiple

relations with the same predicate symbol and arity. We therefore say vertex-enrichment is

a simplified approach to inclusion of relational information. In this chapter, we attempt to

rectify this deficiency by including all of the relational information available into a graph-

based neural network or GNN. The technique we propose is based on inverse entailment

developed in the Inductive Logic Programming (ILP) literature. Here, for any given

relational data instance, the inverse-entailment technique allows us to identify all the

domain-relations entailed by the domain-knowledge via the construction of a bottom-

clause. We propose a method to represent a bottom-clause using a bottom-graph that can

be converted into a form suitable for GNN implementations. Overall, this transformation

from a bottom-clause to a bottom-graph allows a principled way for complete inclusion

of domain-knowledge into GNNs: we use the term “BotGNNs” for this form of graph

neural networks. We evaluate the use of domain-knowledge in this manner using the

relational datasets and background knowledge studied in the previous chapters. The

main contributions of this chapter are as follows: (1) This chapter proposes a systematic

technique using the method of inverse entailment in ILP, in particular, Mode-Directed

Inverse-Entailment (MDIE) for complete inclusion of symbolic domain-knowledge into

GNNs. The proposal in this chapter is a new technique for neuro-symbolic learning,

called Bottom-Graph Neural Networks or BotGNNs; (2) This chapter provides a large-

∗The content of this chapter is based on the following:
T. Dash, A. Srinivasan, A. Baskar, “Inclusion of domain-knowledge into GNNs using mode-directed
inverse entailment”, Machine Learning, 2021; https://doi.org/10.1007/s10994-021-06090-8.

89

https://doi.org/10.1007/s10994-021-06090-8

scale evaluation of BotGNNs, constructed using relational data and domain-knowledge.

5.1 Mode-Directed Inverse Entailment

Mode-directed Inverse Entailment (MDIE) was introduced by Muggleton in [Mug95],

as a technique for constraining the search for explanations for data in Inductive Logic

Programming (ILP). For this chapter, it is sufficient to focus on variants of ILP that

conforms to the following input-output requirements:1

Given: (i) B, a set of clauses (constituting background- or domain-) knowledge; (ii) a

set of clauses E+ = {p1, p2, . . . , pN} (N > 0), denoting a conjunction of “positive

examples”; and (iii) a set of clauses E− = {n1, n2, . . . , nM} (M ≥ 0), denoting a

conjunction of “negative examples”, such that

Prior Necessity. B ̸|= E+

Find: A finite set of clauses (usually in a subset of first-order logic), H = {D1, D2, . . . , Dk}
such that

Weak Posterior Sufficiency. For every Dj ∈ H, B ∪ {Dj} |= p1 ∨ p2 ∨ · · · ∨ pN

Strong Posterior Sufficiency. B ∪H |= E+

Posterior Satisfiability. B ∪H ∪ E− ̸|= 2

Here |= denotes logical consequence and 2 denotes a contradiction. MDIE implementa-

tions attempt to find the most-probable H, given B and the data E+, E−.2

The key concept used in [Mug95] is to constrain the identification of Dj using a

most-specific clause. The following is adapted from [Mug95].

Remark 5.1 (Most-Specific Clause). Given background knowledge B and a data-instance

e (it does not matter at this point if e ∈ E+ or e ∈ E−), any clause D s.t. B ∪ {D} |= e

will satisfy D |= B ∪ e. This follows directly from the Deduction Theorem. Let A =

a1 ∧ a2 · · · ∧ an be the conjunction of ground literals3 true in all models of B ∪ e. Hence

B ∪ e |= a1 ∧ a2 ∧ · · · ∧ an. That is, a1 ∧ a2 ∧ · · · ∧ an |= B ∪ e. Let ⊥B(e) denote

a1 ∧ a2 ∧ · · · ∧ an. That is, ⊥B(e) is the clause ¬a1∨¬a2∨ · · ·∨¬an. Furthermore, since

the ais’ are ground, ⊥B(e) is a ground clause.

1In the following, clauses will usually be in some subset of first-order logic (usually Horn- or definite-
clauses). When we refer to a set of clauses, we will usually assume it to be finite. A set of clauses C =
{D1, D2, . . . , Dk} will often be used interchangebly with the logical formula C = D1 ∧D2 ∧ · · · ∧Dk.

2Usually, the entailment relation |= is used to identify logical consequences of some set of logical sentences
P . That is, what are the e’s s.t. P |= e? Here, we are given the e’s and B, and are asking what is an
H s.t. P = B ∪H. In this sense, H is said to be the result of inverting entailment (IE).

3In theory, the number of ground literals can be infinite. Practical constraints that restrict this number
to a finite size are described shortly.

90

For any clause D, if D |= ⊥B(e) then D |= B ∪ e. Thus any such D satisfies the Weak

Posterior Sufficiency condition stated earlier. ⊥B(e) is called the most-specific clause (or

“bottom clause”) for e, given B.

Thus, bottom clause construction for a data-instance e provides a mechanism for inclusion

of all the ground logical consequences given the domain-knowledge B and the instance e.

Example 5.1. In the following, capitalised letters like X, Y denote variables. Let

B:

parent(X, Y)← father(X, Y)

parent(X, Y)← mother(X, Y)

mother(jane, alice)←

e:

gparent(henry, john) ←
father(henry, jane),

mother(jane, john)

Here “←” should be read as “if” and the comma (“,”) as “and”. So, the definition for

gparent is to be read as: “henry is a grandparent of john if henry is the father of jane

and jane is the mother of john”.

The conjunction A of ground literals, true in all models of B ∪ e, is:
¬gparent(henry, john) ∧ father(henry, jane) ∧ mother(jane, john) ∧
mother(jane, alice) ∧ parent(henry, jane) ∧ parent(jane, alice) ∧
parent(jane, john)

⊥B(e) = A:

gparent(henry, john)←
father(henry, jane), mother(jane, john), mother(jane, alice),

parent(henry, jane), parent(jane, john), parent(jane, alice)

The above clause is logically equivalent to the disjunct:

gparent(henry, john) ∨ ¬father(henry, jane) ∨ · · · ∨ ¬parent(jane, alice).

We will also write clause like this as the set:

{gparent(henry, john),¬father(henry, jane), . . . ,¬parent(jane, alice)}.

⊥B(e) thus “extends” the example e to include relations in the background knowledge

provided: our interest is in the inclusion of the parent/2 relation. The literals in the

correct definition of gparent is a “generalised” form of subset of the literals in ⊥B(e). Of

course, to find the subset and its generalised form efficiently is a different matter, and is

the primary concern of ILP systems used to implement MDIE.

91

It is common to call the non-negated literal in the disjunct (gparent(henry, john)) as

the “head” literal, and the negated literals in the disjunct as the “body” literals. In

this chapter, we will restrict ourselves to ⊥B(e)s’ that are definite-clauses (clauses with

exactly one head literal). This is for practical reasons, and not a requirement of the

MDIE formulation of most-specific clauses.

Construction of ⊥B(e) is called a saturation step, reflecting the extension of the ex-

ample by all potentially relevant facts that are derivable using B and the example e. The

domain-knowledge can encode significantly more information than simple binary relations

(like parent above).

Example 5.2. Suppose data consist of the atom-and-bond structure of molecules that

are known to be toxic. Each toxic molecule can be represented by a clausal formula. For

example, a toxic molecule m1 could be represented by the logical formula (here a1, a2 are

atoms, c denotes carbon, ar denotes aromatic, and so on):

toxic(m1)←
atom(m1, a1, c),

atom(m1, a2, c),
...

bond(m1, a1, a2, ar),

bond(m1, a2, a3, ar),
...

The above clause can be read as: molecule m1 is toxic, if it contains atom a1 of type

carbon, atom a2 of type carbon, there is an aromatic bond between a1 and a2, and so on.

We will see later that this is a definite-clause encoding of a graph-based representation of

the molecule m1.

Given background knowledge definitions (for example, of rings and functional groups),

⊥B(e) would extend the logical definition of e with relevant parts of the background knowl-

edge:

toxic(m1)←
atom(m1, a1, c),

atom(m1, a2, c),
...

bond(m1, a1, a2, ar),

bond(m1, a2, a3, ar),
...

benzene(m1, [a1, a2, a3, a4, a5, a6]),

benzene(m1, [a3, a4, a8, a9, a10, a11]),
...

fused(m1, [a1, a2, a3, a4, a5, a6], [a3, a4, a8, a9, a10, a11]),

92

...

methyl(m1, [. . .]),
...

As seen from this example, the size of ⊥B(·) can be large. More problematically, for com-

plex domain-knowledge, ⊥B(e) may not even be finite. To address this, MDIE introduces

the notion of a depth-bounded bottom-clause, using mode declarations.

5.1.1 Modes

Practical ILP systems like Progol [Mug95] use a depth-bounded bottom clause constructed

within a mode-language. We first illustrate a simple example of a mode-language speci-

fication.

Example 5.3. A “mode declaration” for an n-arity predicate P (often written as P/n) is

one of the following kinds: (a) modeh(P (a1, a2, . . . , an)); or (b) modeb(P (a1, a2, . . . , an)).

A set of mode-declarations for the predicates in the gparent example is

M = {modeh(gparent(+person,−person)),modeb(father(+person,−person)),

modeb(mother(+person,−person)),modeb(parent(+person,−person))}.

The modeh specifies details about literals that can appear in the head of a clause in the

mode-language and the modeb’s specify details about literals that can appear in the body of

a clause. A “mode declaration” refers to either a modeh or modeb statement. Based on

the mode-language specified in [Mug95], each argument ai in the mode declarations above

is one of: (1) +person, denoting that the argument in that literal is an ‘input’ variable

of type person.4 That is, the variable must have appeared either as a −person variable

in a literal that appears earlier in the body of the clause or as a +person variable in the

head of the clause; (2) −person, denoting that the variable in the literal is an ‘output’

variable of type person. If an output variable appears in the head of a clause, it must

appear as an output variable of some literal in the body. There are no special constraint

on output variables in body-literals. That is, they can either be a new variable, or any

variable (of the same type) that has appeared earlier in the clause. Later we will see how

mode-declarations allow the appearance of ground terms.

Example 5.4. Continuing Example 5.3, in the following X, Y, Z are variables of type

person. These clauses are all within the mode language specified in [Mug95]:

(a) gparent(X, Y)← parent(X, Y);

4Informally, “a variable of type γ” will mean that ground substitutions for the variable are from some
set γ. Here, γ is the set person = {henry, jane, alice, john, . . .}: that is, person is a unary-relation.

93

(b) gparent(X, Y)← parent(X,X);

(c) gparent(X, Y)← mother(X, Y); and

(d) gparent(X, Y)← parent(X,Z), parent(Z, Y).

But the following clauses are all not within the mode language in [Mug95]:

(e) gparent(X, Y)← parent(Y, Z) (Y does not appear before);

(f) gparent(X, Y)← parent(X, Y), parent(Z, Y) (Z does not appear before);

(g) gparent(henry, Y) ← parent(henry, Z), parent(Z, Y) (+ arguments have to be

variables, not ground terms); and

(h) gparent(X, Y)← parent(Z, jane), parent(Z, Y) (− arguments have to be variables,

not ground terms).

We refer the reader to [Mug95] for more details on the use of modes. Here we confine

ourselves to the details necessary for the material in this chapter. We first reproduce the

notion of a place-number of a term in a literal following [Plo72].

Definition 5.1 (Term Place-Numbering). Let π = ⟨i1, . . . , ik⟩ be a sequence of natural

numbers. We say that a term τ is in place-number π of a literal λ iff: (1) π ̸= ⟨⟩; and
(2) τ is the term at place-number ⟨i2, . . . , ik⟩ in the term at the ith1 argument of λ. τ is at

a place-number π in term τ ′: (1) if π = ⟨⟩ then τ = τ ′; and (2) if π = ⟨i1, . . . , ik⟩ then τ ′

is a term of the form f(t1, . . . , tm), i1 ≤ m and τ is in place-number ⟨i2, . . . , ik⟩ in ti1.

Example 5.5. Let us look at the following examples:

(a) In the literal λ = gparent(henry, john), the term henry occurs in the first argument

of λ and john occurs in the second argument of λ. The place-numbering of henry in λ

is ⟨1⟩ and of john in λ is ⟨2⟩.
(b) As a more complex example, let λ = mem(a, [a, b, c]) denote the statement that a

is a member of the list [a, b, c]. The second argument of λ is short-hand for the term

list(a, list(b, list(c, nil))) (usually, the function list/2 is represented as ‘.’/2 in the logic-

programming literature). Then the term a is a term that occurs in two place-numbers in

λ: ⟨1⟩, and ⟨2, 1⟩. The term b occurs at place-number ⟨2, 2, 1⟩ in λ; the term c occurs at

place-number ⟨2, 2, 2, 1⟩ in λ; and the term nil occurs at place-number ⟨2, 2, 2, 2⟩ in λ.

We first present the syntactic aspects constituting a mode-language. The meaning of

these elements is deferred to the next section.

Definition 5.2 (Mode-Declaration). The definition is as follows:

94

(a) Let Γ be a set of type names. A mode-term is defined recursively as one of: (i)

+γ, −γ or #γ for some γ ∈ Γ; or (ii) ϕ(mt′1,mt
′
2, . . . ,mt

′
j), where ϕ is a function

symbol of arity j, and the mt′ks are mode-terms. We will call mode-terms of type

(i) simple mode-terms and mode-declarations of type (ii) structured mode-terms.5

(b) A mode-declaration µ is of the form modeh(λ′) or modeb(λ′). Here λ′ is a ground-

literal of the form p(mt1,mt2, . . . ,mtn) where p is a predicate name with arity n,

and the mti are mode-terms. We will say µ is a modeh-declaration (resp. modeb-

declaration) for the predicate-symbol p/n.6 We will also use ModeLit(µ) to denote

λ′.

(c) µ is said to be a mode-declaration for a literal λ iff λ and ModeLit(µ) have the

same predicate symbol and arity.

(d) Let τ be the term at place-number π in µ, We define

ModeType(µ, π) =



(+, γ) if τ = +γ

(−, γ) if τ = −γ

(#, γ) if τ = #γ

unknown otherwise.

(e) If µ is a mode-declaration for literal λ, ModeType(µ, π) = (+, γ) for some place-

number π, τ is the term at place π in λ, then we will say τ is an input-term of

type γ in λ given µ (or simply τ is an input-term of type γ). Similarly we define

output-terms and constant-terms.

5.1.2 Depth-Limited Bottom Clauses

Returning now to the most-specific clause ⊥B(e) for a data-instance e, given background

knowledge B, it is sufficient for our purposes to understand that the input-output specifi-

cations in a set of mode-declarations result in a natural notion of the depth at which any

term first appears in ⊥B(e) (terms that appear in the head of the clause are at depth 0,

terms that appear in literals whose input terms depend only on terms in the head are at

depth 1, and so on. A formal definition follows below.) By fixing an upper-bound d on

this depth, we can restrict ourselves to a finite-subset of ⊥B(e).7 This is called the depth-

limited bottom clause. Given a set of mode-declarations M, we denote this depth-limited

5For all experiments in this chapter, modes consist only of simple mode-terms.
6In general there can be several modeh or modeb-declarations for a predicate-symbol p/n. If there is
exactly one mode-declaration for a predicate symbol p/n, we will say the mode declaration for p/n is
determinate.

7In fact, additional restrictions are also needed on the number of times a relation can occur at any depth.
In implementations like [Mug95], this is usually provided as part of the mode declaration.

95

clause by ⊥B,M,d(e) (or simply ⊥d(e)), where d is a (pre-specified) depth-limit. We will

refer to the corresponding mode-language as a depth-limited mode-language and denote

it by LM,d. We first illustrate this with an example before defining depth formally.

Example 5.6. Using the modes M in Example 5.3, we obtain the following most-specific

clauses for the gparent example (Example 5.1):

⊥B,M,1(e):

gparent(henry, john)←
father(henry, jane),

parent(henry, jane)

⊥B,M,2(e):

gparent(henry, john)←
father(henry, jane),

mother(jane, john),

mother(jane, alice),

parent(henry, jane),

parent(jane, john),

parent(jane, alice)

We now formally define type-definitions and depth for ground-terms.

Definition 5.3 (Type Definitions). Let Γ be a set of types and T be a set of ground-

terms. For γ ∈ Γ we define a set of ground-terms Tγ = {τ1, τ2, . . .}, where τi ∈ T. We

will say a ground-term τi is of type γ if τi ∈ Tγ, and denote by TΓ the set {Tγ : γ ∈ Γ}.
TΓ will be called a set of type-definitions.

Definition 5.4 (Depth of a term). Let M be a set of modes. Let C be a ground clause.

Let λi be a literal in C and let τ be an input- or output-term of type γ in λi given some

µ ∈ M. Let Yτ be the set of all other terms in body literals of C that contain τ as an

output-term of type γ. Then,

depth(τ) =


0 if τ is an input-term of type γ

in a head literal of C

minτ ′∈Yτ depth(τ ′) + 1 otherwise.

Example 5.7. In the previous example for C = ⊥B,M,2(e), depth(henry) = 0, depth(jane)

= depth(henry) + 1 = 1, depth(john) = depth(jane) + 1 = 2, and depth(alice) =

depth(jane) + 1 = 2.

A set of mode-declarations M (see Defn. 5.2), a set of type-definitions TΓ, and a depth-

limit d together define a set of acceptable ground clauses LTΓ,M,d. Informally, LTΓ,M,d

consists of ground clauses in which: (a) all terms are correctly typed; (b) all input terms

in a body literal have appeared as output terms in previous body literals or as input terms

in any head literal; and (c) all output terms in any head literal appear as output terms in

some body literals. In this chapter, we will mainly be interested in definite-clauses (that

is, m = 1 in the definition that follows).

96

Definition 5.5 (λµ-Sequence). Assume a set of type-definitions TΓ, modes M, and a

depth-limit d. Let C = {l1, . . . , lm,¬lm+1, . . . ,¬lk} be a clause with k ground literals.

Then ⟨(λ1, µ1),(λ2, µ2), . . . , (λk, µk)⟩ is said to be a λµ-sequence for C iff it satisfies the

following constraints:

(a) (i) The λ’s are all distinct and (ii) For j = 1 . . . k, µj is a mode-declaration for λj;

(iii) For j = 1 . . .m, λj = lj and µj = modeh(·); (iv) For j = (m+ 1) . . . k, λj = li

where ¬li ∈ C, and µj = modeb(·).

(b) If τ is an input-term of type γ in λj given µj, then

(i) τ ∈ Tγ; and

(ii) if j > m:

• There is an input-term τ of type γ in one of λ1, . . . , λm given µ1, . . . , µm;

or

• There is an output-term τ of type γ in λi (m < i < j) given µi.

(c) If τ is an output-term of type γ in λj given µj, then

(i) τ ∈ Tγ; and

(ii) if j ≤ m:

• τ is an output-term of type γ for some λi (m < i ≤ k) given µi.

(d) If τ is a constant-term of type γ in λj given µj, then τ ∈ Tγ.

(e) There is no term τ at any place π in any λj s.t. the depth(τ) > d.

Definition 5.6 (Mode-Language). Assume a set of type-definitions TΓ, modes M, and

a depth-limit d. The mode-language LTΓ,M,d for TΓ,M, d is {C : either C = ∅ or there

exists a λµ-sequence for C}.

Example 5.8. Let M = {µ1, µ2, µ3, µ4, µ5, µ6} where the mode declarations µis are as

follows: µ1 = modeh(p(+int)), µ2 = modeh(p(+real)), µ3 = modeb(q(+int)), µ4 =

modeb(q(+real)), µ5 = modeb(r(+int)), µ6 = modeb(r(+real)). Let the depth-limit d =

1. Let C be a ground definite-clause p(1)← q(1), r(1). That is, C = {p(1),¬q(1),¬r(1)}.
Let: λ1 = p(1), λ2 = q(1), λ3 = r(1). Then, C is in LM,d. The λµ-sequences for

C are ⟨(λ1, µ1), (λ2, µ3), (λ3, µ5)⟩; ⟨(λ1, µ1), (λ3, µ5), (λ2, µ3)⟩; ⟨(λ1, µ2), (λ2, µ4), (λ3, µ6)⟩;
⟨(λ1, µ2), (λ3, µ6), (λ2, µ4)⟩.

We note that Defn. 5.6 does not allow the following two sequences to to be λµ-

sequences: ⟨(λ1, µ1), (λ2, µ4), (λ3, µ5)⟩ and ⟨(λ1, µ2), (λ2, µ4), (λ3, µ5)⟩, because a 1 of type

int is treated as being different to a 1 of type real.

97

We note that although the meanings of +, − and # are the same here as in [Mug95],

clauses in LTΓ,M,d here are restricted to being ground (in [Mug95], clauses are required to

have variables in + and − places of literals).

5.2 BotGNNs

In this section, we describe a method to translate the depth-limited most-specific clauses

of the previous section (⊥B,M,d(·)’s) into a form that can be used by standard variants of

GNNs. We illustrate the procedure first with an example.

Example 5.9. Consider ⊥B,M,2(e) in Example 5.6. The tabulation below shows the lit-

erals in ⊥B,M,2(e) and matching modes.

S.No. Literal (λ) Mode (µ)

1 gparent(henry, john) modeh(gparent(+person,−person))

2 father(henry, jane) modeb(father(+person,−person))

3 mother(jane, john) modeb(mother(+person,−person))

4 mother(jane, alice) modeb(mother(+person,−person))

5 parent(henry, jane) modeb(parent(+person,−person))

6 parent(jane, john) modeb(parent(+person,−person))

7 parent(jane, alice) modeb(parent(+person,−person))

The table below shows the ground-terms (τs) in literals appearing in ⊥B,M,2(e) and

their types (γs), obtained from the corresponding term-place number in the matching

mode.

S.No. Term (τ) Type (γ)

1 henry person

2 john person

3 jane person

4 alice person

The information in these tables can be represented as a directed bipartite graph as

shown in Figure 5.1. The square-shaped vertices represent (λ, µ) pairs in the first table,

and the round-shaped vertices represent (τ, γ) pairs in the second table. Arcs from a (λ, µ)

(square-) vertex to a (τ, γ) (round-) vertex indicates term τ is designated by mode µ as

an output or constant term (− or #) of type γ in literal λ. Conversely, an arc from an

(τ, γ) vertex to an (λ, µ) vertex indicates that term τ is designated by mode µ as an input

term (+) of type γ in literal λ.

98

(a) (b)

Figure 5.1: For the gparent example: (a) depth-limited bottom-clause ⊥B,M,2(e); and (b)
the corresponding clause-graph where the vertex-labels (λ, µ)s and (τ, γ)s are as provided
in the preceding tables. The “dashed” square-box and the “dashed” arrow are shown to
indicate the vertex specifying the head of the clause. The subscripts used in the labels
correspond to the S.No. in the tables, for example, (λ3, µ3) refers to the third-row in the
first table in this example; and, similarly, (τ4, γ4) refers to the fourth row in the second
table.

The structure in Figure 5.1 is called a bottom-graph in this chapter. BotGNNs are GNN

models constructed from graphs based on such clause-graphs. We first clarify some details

needed for the construction of clause-graphs.

5.2.1 Notations and Assumptions

Sets. We use the following notations:

(a) Set E to define a set of relational data-instances8;

(b) Sets P, F,K to denote predicate-symbols, function-symbols, and constant-

symbols, respectively;

(c) Λ to denote the set of all positive ground-literals that can be constructed using

P, F,K; and T to denote the set of all ground-terms that can be constructed

using F,K;9

(d) ΛC to denote the set of all literals in a clause C;

(e) B to denote the set of predicate-definitions constituting background knowl-

edge;

(f) M to denote the set of modes for the predicate-symbols in P ;

8In this chapter, this set consists of definite clauses.
9A term is defined recursively as a constant from K, a variable, or a function symbol from F applied to
term. A ground term is a term without any variables.

99

(g) Let Γ′ to denote the set of type-names used by modes in M. In addition, we

assume a special type-name R to denote a numeric type. We denote by Γ the

set Γ′ ∪ {#t : t ∈ Γ′ s.t. #t occurs in some mode µ ∈ M};

(h) LM to denote the set {(λ, µ) : λ ∈ Λ, µ ∈ M, µ is a mode-declaration for λ };
and ET to denote the set {(τ, γ) : τ ∈ T, γ ∈ Γ, τ is of type γ};

(i) Xs to denote the set {x1, . . . , x|LM |} and Y s to denote the set {y1, . . . , y|ET |};

(j) B to denote the set of bipartite graphs10 of the form (X, Y,E) where X ⊆ Xs,

Y ⊆ Y s, and E ⊆ (Xs× Y s) ∪ (Y s×Xs);

(k) G to denote the set of labelled bipartite graphs ((X, Y,E), ψ) where (X, Y,E) ∈
B and ψ : (Xs ∪ Y s)→ (LM ∪ ET);

(l) We will use CG⊤ to denote the special graph ((∅, ∅, ∅), ∅) ∈ G.

Functions. We assume bijections hx : LM → Xs; and hy : ET → Y s.

Implementation. We will assume the following implementation details:

1. The elements of Γ are assumed to be unary predicate symbols, and the type-

definitions TΓ in Defn. 5.3 will be implemented as predicate-definitions in B.

That is, if a ground-term τ is of type γ ∈ Γ (that is, τ ∈ Tγ in Defn. 5.3) then

γ(τ) ∈ B. We will therefore refer to the mode-language LTΓ,M,d in Defn. 5.6

as LB,M,d;

2. An MDIE implementation that, given B,M, d, ensures for any ground definite-

clause e returns a unique ground definite-clause ⊥B,M,d(e) ∈ LB,M,d if it exists

or ∅ otherwise. In addition, if ⊥B,M,d(e) ∈ LB,M,d, we assume the MDIE

implementation has been extended to return at least one matching λµ-sequence

for ⊥B,M,d.

5.2.2 Construction of Bottom-Graphs

We now define the graph-structures or simply, the graphs constructed from the depth-

limited bottom-clauses.

Definition 5.7 (Literals Set). Given background knowledge B, a set of modes M, and a

depth-limit d, let C be a clause in LB,M,d. We define LitsB,M,d(C), or simply Lits(C) as

follows:

(i) If C = ∅ then Lits(C) = ∅;
10A directed graph G = (V,E) is called bipartite if there is a 2-partition of V into sets X,Y , s.t. there
are no vertices a, b ∈ X (resp. Y) s.t. (a, b) ∈ E. We will sometimes denote such a bipartite graph by
(X,Y,E), where it is understood that V = X ∪ Y .

100

(ii) If C ̸= ∅, let LM be the set of all λµ-sequences for C. Then Lits(C) = {(λi, µi) :

S ∈ LM and (λi, µi) is in sequence S}.

The definition for Lits(·) requires all λµ-sequences to ensure that Lits is well-defined.

In practice, we restrict ourselves to the λµ-sequences identified by the MDIE implemen-

tation. If these are a subset of all λµ-sequences, then the resulting clause-graph will be

“more general” than that obtained with all λµ-sequences (see subsection 5.2.3).

Example 5.10. We revisit the gparent example. Let M = {µ1, µ2, µ3, µ4}, where

µ1 = modeh(gparent(+person,−person)), µ2 = modeb(father(+person,−person)),

µ3 = modeb(mother(+person,−person), µ4 = modeb(parent(+person,−person)).

Let’s assume that background knowledge B contains the type-definitions: person(henry),

person(john), person(jane), person(alice); and the depth-bound be d = 2. Let C =

⊥B,M,d(e) as in Example 5.6.

1. Here C is the set consisting of the literals: {gparent(henry, john), ¬father(henry, jane),
¬mother(jane, john), ¬mother(jane, alice), ¬parent(henry, jane), ¬parent(jane, john),

¬parent(jane, alice)}.

2. ΛC = { λ1, λ2, . . . , λ7} where λ1 = gparent(henry, john), λ2 = father(henry, jane),

λ3 = mother(jane, john), λ4 = mother(jane, alice), λ5 = parent(henry, jane), λ6

= parent(jane, john), λ7 = parent(jane, alice).

3. C ∈ LB,M,d because S = ⟨(λ1, µ1), (λ2, µ2), (λ3, µ3), (λ4, µ3), (λ5, µ4), (λ6, µ4),

(λ7, µ4)⟩ is a λµ-sequence for C. Some other permutations of S will also be λµ-

sequences. The reader can verify that the terms in λ-components of S are correctly

typed; input terms in the body literals appear after corresponding output terms in

body-literals earlier in the λ-components of S, or as input-terms in λ1; the output-

term in λ1 appears as an output-term in some λ later in the sequence S.

4. Then Lits(C) = {(λ1, µ1), (λ2, µ2), (λ3, µ3), (λ4, µ3), (λ5, µ4), (λ6, µ4), (λ7, µ4)}.

Definition 5.8 (Terms Set). Given background knowledge B, a set of modes M, a depth-

limit d, let C ∈ LB,M,d. We define TermsB,M,d(C), or simply Terms(C) as follows:

If Lits(C) = ∅, then Terms(C) = ∅. Otherwise, for any pair (λ, µ) ∈ Lits(C),

let Ts((λ, µ)) = {(λ, µ, π) : π is a place-number s.t. ModeType(µ, π) = (·, γ) for some

γ ∈ Γ}. Then Terms(C) =
⋃

x∈Lits(C) Ts(x).

Example 5.11. In Example 5.10, Lits(C) = {(λ1, µ1), (λ1, µ1), . . . , (λ7, µ4)}. There-

fore, Terms(C) = {(λ1, µ1, ⟨1⟩), (λ1, µ1, ⟨2⟩), (λ2, µ2, ⟨1⟩), (λ2, µ2, ⟨2⟩), . . . , (λ7, µ4, ⟨1⟩),
(λ7, µ4, ⟨2⟩)}.

101

Definition 5.9 (Clause-Graphs). Given background knowledge B, a set of modes M, and

a depth-limit d, we define a function ClauseToGraph : LB,M,d → G as follows.

If C = ∅ then ClauseToGraph(C) = CG⊤ (see subsection 5.2.1). Otherwise, the

clause-graph of C is given as ClauseToGraph(C) = (G,ψ) ∈ G where

• The graph G = (X, Y,E) is defined as:

– X = {xi : (λ, µ) ∈ Lits(C), xi = hx((λ, µ))};

– Y = {yj : (λ, µ, π) ∈ Terms(C), TermType((λ, µ, π)) = (τ, γ),

ModeType(µ, π) ∈ {(+, γ), (−, γ)}, yj = hy((τ, γ))} ∪
{yj : (λ, µ, π) ∈ Terms(C), TermType((λ, µ, π)) = (τ, γ),

ModeType(µ, π) = (#, γ), yj = hy((τ,#γ))};

– E = Ein ∪ Eout, where:

Ein = {(yj, xi) : (λ, µ, π) ∈ Terms(C), xi = hx((λ, µ)),

(τ, γ) = TermType((λ, µ, π)), yj = hy((τ, γ)),

ModeType(µ, π) = (+, γ)}, and

Eout = {(xi, yj) : (λ, µ, π) ∈ Terms(C), xi = hx((λ, µ)),

(τ, γ) = TermType((λ, µ, π)), yj = hy((τ, γ)),

ModeType(µ, π) ∈ {(−, γ), (#, γ)}}.

• The vertex-labelling function ψ is defined as

ψ(v) =

h−1
x (v) if v ∈ X,

h−1
y (v) if v ∈ Y.

In subsection 5.2.3, we show ClauseToGraph(·) is an injective function.

Example 5.12. We continue Example 5.11. Recall Terms(C) = {(λ1, µ1, ⟨1⟩), (λ1, µ1, ⟨2⟩),
(λ2, µ2, ⟨1⟩), . . . , (λ7, µ4, ⟨2⟩)}. Then, in Defn. 5.9, the term-types are given as follows:

TermType((λ1, µ1, ⟨1⟩)) = (henry, person), TermType((λ1, µ1, ⟨2⟩)) = (john, person),

TermType((λ2, µ2, ⟨1⟩)) = (henry, person), . . . , TermType((λ7, µ4, ⟨2⟩)) = (alice, person).

Then ClauseToGraph(C) is as follows:

• G = (X, Y,E) where

– X = {x1, x2, . . . , x7}, with x1 = hx((λ1, µ1)); x2 = hx((λ2, µ2)); . . . ; x7 =

hx((λ7, µ4))

– Y = {y1, y2, y3, y4}, with y1 = hy((henry, person)); y2 = hy((john, person));

y3 = hy((jane, person)); y4 = hy((alice, person))

102

– E = Ein ∪ Eout, with

Ein = {(y1, x1), (y1, x2), (y1, x5), (y3, x3), (y3, x4), (y3, x6), (y3, x7)}
Eout = {(x1, y2), (x2, y3), (x3, y2), (x4, y4), (x5, y3), (x6, y2), (x7, y4)}.

• The vertex-labelling ψ is such that ψ(x1) = (λ1, µ1); ψ(x2) = (λ2, µ2); ψ(x3) =

(λ3, µ3); ψ(x4) = (λ4, µ3); ψ(x5) = (λ5, µ4); ψ(x6) = (λ6, µ4); ψ(x7) = (λ7, µ4);

ψ(y1) = (henry, person); ψ(y2) = (john, person); ψ(y3) = (jane, person); ψ(y4) =

(alice, person).

The reader can compare this to the graph shown diagrammatically in Figure 5.1.

Example 5.13. Examples 5.10–5.12 do not illustrate what happens when we have mul-

tiple matching mode-declarations. To illustrate this we repeat the exercise with Exam-

ple 5.8 (for consistency, we now use the symbol R instead of real). In that exam-

ple, M = {µ1, µ2, µ3, µ4, µ5, µ6} where µ1 = modeh(p(+int)), µ2 = modeh(p(+R)),

µ3 = modeb(q(+int)), µ4 = modeb(q(+R)), µ5 = modeb(r(+int)), µ6 = modeb(r(+R)).

Let the depth-limit d = 1.

1. Here C = { p(1),¬q(1),¬r(1) }.

2. ΛC = {λ1, λ2, λ3}, where λ1 = p(1), λ2 = q(1), λ3 = r(1).

3. C ∈ LB,M,d since there is at least one λµ-sequence for C (in fact, there are 4

matching λµ-sequences: see Example 5.8).

4. Lits(C) = {(λ1, µ1), (λ2, µ3), (λ3, µ5), (λ1, µ2), (λ2, µ4), (λ3, µ6)}.

5. We note that the term 1 is at place-number ⟨1⟩ in all the three literals.

6. Then Terms(C) = {(λ1, µ1, ⟨1⟩), (λ2, µ3, ⟨1⟩), . . . , (λ3, µ6, ⟨1⟩)}

7. Then, in Defn. 5.9, TermType((λ1, µ1, ⟨1⟩)) = (1, int), TermType((λ2, µ3, ⟨1⟩)) =

(1, int), . . . , TermType((λ3, µ6, ⟨1⟩)) = (1,R).

The reader can verify that ClauseToGraph(C) = (G, ·) where G = (X, Y,E) s.t.

• X = {x1, x2, . . . , x6}, with x1 = hx((λ1, µ1)), x2 = hx((λ2, µ3)),. . . , x6 = hx((λ3, µ6))

• Y = {y1, y2}, with y1 = hy((1, int)) and y2 = hy((1,R))

• E = {(y1, x1), (y1, x2), (y1, x3), ((y2, x4), (y2, x5), (y2, x6)}.

It is now straightforward to define graphs from most-specific clauses.

Definition 5.10 (Bottom-Graphs). Given a data instance e ∈ E, and B,M, d as before,

let ⊥B,M,d(e) be the (depth-bounded) most-specific ground definite-clause for e. We define

BotGraphB,M,d(e) ≡ BotGraph : E → G as BotGraph(e) = ClauseToGraph(⊥B,M,d(e)).

103

Example 5.14. For our gparent/2 example described through out this chapter, the

bottom-graph for the most-specific clause with d = 2 is written as: BotGraph(e) =

ClauseToGraph(⊥B,µ,2(e)), which is shown in the following diagram. In the diagram,

the “dashed” square-boxes and the “dashed” arrows are shown to indicate the vertices

specifying the head of the clause:

The vertex-labelling in the above graph is as obtained in Example 5.12, where γ1 denotes

the type-name person, τ1,τ2, τ3, τ4 denote the terms henry, john, jane, alice, respec-

tively. The reader can verify that the diagram above is consistent with the bottom-graph

shown in Figure 5.1.

We now provide some properties of clause-graphs.

5.2.3 Some Properties of Clause-Graphs

We note the following properties about clause-graphs. For these properties, we assume

background knowledge B, a set of modes M, and a depth-limit d as before. Clause-graphs

are elements of the set G and are structures of the form ((X, Y,E), ψ) where (X, Y,E)

are bipartite graphs from the set B (see subsection 5.2.1). We assume G contains the

element CG⊤ = ((∅, ∅, ∅), ∅). We also define the following equality relation over elements

of G: ((Xi, Yi, Ei), ψi) = ((Xj, Yj, Ej), ψj)) iff Xi = Xj, Yi = Yj, Ei = Ej and ψi = ψj.

Also, given a clause C = {l1, . . . , lm,¬lm+1, . . . ,¬lk}, where 1 ≤ m < k, we have ΛC is

the set {l1, . . . , lm+1, . . . , lk}.

Definition 5.11 (⪯cg). Let CG1 = (G1, ψ1), CG2 = (G2, ψ2) be elements of G, where
G1 = (X1, Y1, E1) and G2 = (X2, Y2, E2) Then CG1 ⪯cg CG2 iff the following hold: (a)

X1 ⊆ X2; (b) Y1 ⊆ Y2; (c) E1 ⊆ E2; and (d) ψ1 ⊆ ψ2.

Proposition 5.1. ⟨G,⪯cg⟩ is partially ordered.

Proof: To prove this, let CG = ((X, Y,E), ψ), and CGi = ((Xi, Yi, Ei), ψi).

Reflexive. If CG ∈ G then CG ⪯cg CG. This follows trivially since X ⊆ X, Y ⊆ Y ,

E ⊆ E and ψ ⊆ ψ.

104

Anti-Symmetric. Let CG1, CG2 ∈ G. If CG1 ⪯cg CG2 and CG2 ⪯cg CG1 then CG1 =

CG2. Since CG1 ⪯cg CG2, and CG2 ⪯cg CG1 X1 ⊆ X2 and X2 ⊆ X1. Therefore

X1 = X2. Similarly Y1 = Y2, E1 = E2 and ψ1 = ψ2, and therefore CG1 = CG2;

Transitive. Let CG1, CG2, CG3 ∈ G. If CG1 ⪯cg CG2 and CG2 ⪯cg CG3 then CG1 ⪯cg

CG3. Since CG1 ⪯cg CG2 and CG2 ⪯cg CG3 then X1 ⊆ X2 and X2 ⊆ X3.

Therefore X1 ⊆ X3. Similarly, Y1 ⊆ Y3, E1 ⊆ E3 and ψ1 ⊆ ψ3. Therefore,

CG1 ⪯cg CG3.

■

For CG1, CG2 ∈ G, if CG1 ⪯cg CG2, then we will say CG1 is more general than CG2.

We note without formal proof that if CG ∈ G then CG⊤ ⪯cg CG.

Remark 5.2. The following are the consequences of the Defns. 5.7–5.9, and Defn. 5.11:

(i) Let C,D ∈ LB,M,d, CG1 = ClauseToGraph(C), and CG2 = ClauseToGraph(D)

where CG1 = ((X1, Y1, E1), ψ1) and CG2 = ((X2, Y2, E2), ψ2). If (X1 ⊆ X2) then

CG1 ⪯cg CG2. By construction, X1 ⊆ X2 iff Lits(C) ⊆ Lits(D). It follows that

Terms(C) ⊆ Terms(D), and Y1 ⊆ Y2. Since E1 contains all the relevant arcs

between X1 and Y1 and E2 contains all the relevant arcs between X2 and Y2; E2

will contain all the elements of E1. Since hx, hy are bijections, ψ1 ⊆ ψ2. Hence

CG1 ⪯cg CG2;

(ii) Let C,D ∈ LB,M,d. The clause-graphs of C and D are CG1 = ClauseToGraph(C) =

((X1, Y1, E1), ψ1) and CG2 = ClauseToGraph(D) = ((X2, Y2, E2), ψ2), respectively.

Let LM1 be the set of λµ-sequences for C and LM2 be the set of λµ-sequences for

D. If LM1 ⊆ LM2 then CG1 ⪯cg CG2. It is evident that Lits(C) ⊆ Lits(D).

Therefore X1 ⊆ X2, which further combines with the observation (i) above, we get

CG1 ⪯cg CG2.

Lemma 5.1 (Lits). The function Lits : LB,M,d → 2LM (defined in Defn. 5.7) is well-

defined. That is, if C = D, then Lits(C) = Lits(D).

Proof: Assume the contrary. That is, C = D and Lits(C) ̸= Lits(D). Since C = D,

ΛC = ΛD. Further, since Lits(C) ̸= Lits(D), for some λi ∈ ΛC ,ΛD, there must exist

µi ∈ M s.t. (λi, µi) ∈ Lits(C) and (λi, µi) ̸∈ Lits(D) or vice versa. This is not possible

because Lits(C) and Lits(D) contain all λµ-sequences for C,D. ■

Lemma 5.2. Let C,D ∈ LB,M,d. Let the corresponding clause-graphs of these two clauses

be CG1 = ClauseToGraph(C) and CG2 = ClauseToGraph(D). if C = D then CG1 =

CG2.

105

Proof: The result holds trivially if C = D = ∅; therefore we consider C,D ̸= ∅. Let

CG1 = ((X1, Y1, E1), ψ1) and CG2 = ((X2, Y2, E2), ψ2). Since C = D, by Lemma 5.1

Lits(C) = Lits(D). From Defn. 5.8, Terms(C) = Terms(D) iff Lits(C) = Lits(D).

From Defn. 5.9, X1 = X2 iff Lits(C) = Lits(D) and Y1 = Y2 iff Terms(C) = Terms(D).

If X1 = X2 and Y1 = Y2 then E1 = E2. Since hx, hy are bijections, ψ1 = ψ2. This implies,

CG1 = CG2. ■

Proposition 5.2 (ClauseToGraph). The function ClauseToGraph : LB,M,d → G (de-

fined in Defn. 5.9) is injective.

Proof: Let C and D in LB,M,d, and the corresponding clause-graphs of these two clauses

be CG1 = ClauseToGraph(C) and CG2 = ClauseToGraph(D). We need to show that

if CG1 = CG2 then C = D.

Let CG1 = (G1, ψ1) and and CG2 = (G2, ψ2), where G1 = (X1, Y1, E1) and G2 =

(X2, Y2, E2). Since CG1 = CG2, (G1, ψ1) = (G2, ψ2). That is, X1 = X2, Y1 = Y2 and ψ1

= ψ2. Suppose C ̸= D. Then, either there is some literal in C that is not in D or vice

versa. Let λi ∈ C, and λi ̸∈ D. Let λi be the corresponding literal in ΛC , and λi ̸∈ ΛD.

Then since C ∈ LB,M,d there must be at least one µi ∈ M s.t. (λi, µi) ∈ Lits(C). Let

x = hx((λi, µi)) ∈ X1. Since hx is a bijection, and λi ̸∈ D, there will be no other λ and

µ such that hx((λ, µ)) = x. Hence x ̸∈ X2. This is a contradiction, because X1 = X2.

Similarly, we can prove for λi ∈ D and λi ̸∈ C. ■

Proposition 5.3 (Left-Inverse). ClauseToGraph(·) has a left-inverse.

Proof: We show that there is a function GraphToClause : G → LB,M,d s.t. for all

C ∈ LB,M,d, GraphToClause(ClauseToGraph(C)) = C.

Let CG = ClauseToGraph(C). So, CG = (G,ψ), where G = (X, Y,E). For each

xi ∈ X, consider the following sets:

1. L+ = {λi : xi ∈ X,ψ(xi) = (λi, µi), µi = modeh(·)};

2. L− = {¬λi : xi ∈ X,ψ(xi) = (λi, µi), µi = modeb(·)}.

Let GraphToClause(CG) = C ′ where C ′ = L+ ∪ L−. We claim C = C ′. Assume

C ̸= C ′. Then there must be some literal li ∈ C s.t. li ̸∈ C ′ (or vice versa). Let the

corresponding literal in ΛC be λi. Since C ∈ LB,M,d, there must be some λµ-sequence

(Defn. 5.5) for C s.t. some (λi, µi) ∈ Lits(C) (Defn. 5.7) and hx((λi, µi)) ∈ X (Defn. 5.9).

Then, by the construction above, li ∈ C ′, which is a contradiction. Suppose li ∈ C ′ and

li ̸∈ C. Then there cannot be any (λi, µi) s.t. hx((λi, µi)) ∈ X. By construction, li ̸∈ C ′,

which is a contradiction. Therefore there is no li ∈ C and li ̸∈ C ′, or vice versa, and

hence C = C ′. ■

106

Remark 5.3. We note the following without formal proofs:

(i) In Defn. 5.10, if there exists a unique ⊥B,M,d(e) ∈ LB,M,d then BotGraphB,M,d(e) is

unique. The proof follows from BotGraphB,M,d(e) = ClauseToGraph(⊥B,M,d(e)).

(ii) In Defn. 5.12, Antecededent : G → G is well-defined. That is, if Antecedent(CG1) ̸=
Antecedent(CG2) then CG1 ̸= CG2. Again the proof follows from the contrapos-

itive which is easily seen to hold. Also, we note that Antecedent is many-to-one,

that is, it is possible that CG1 ̸= CG2, and Antecedent(CG1) = Antecedent(CG2).

(iii) In Defn. 5.13, UGraph : G → G is well-defined. That is, if UGraph(CG1) ̸=
UGraph(CG2) then CG1 ̸= CG2. This follows from the contrapositive which is

easily shown to hold (that is, if CG1 = CG2 then UGraph(CG1) = UGraph(CG2)).

Remark 5.4 (Size of a Bottom-Graph). We find the bound on the size of a clause-graph

obtained from a most-specific clause–the bottom-graph–by using the result in [Mug95,

Theorem 26].

Let ⊥B,M,d(e) denote a most-specific clause for an example e, given B, M, d, and

((X, Y,E), ψ) denote the corresponding clause-graph. Let j+ denote an upper-bound on

the number of + arguments in modeb declarations in M and the number of −,# argu-

ments in modeh declarations in M. Let j− denote an upper-bound on the number of −,#
arguments in modeb declarations in M and the number of + arguments in modeh decla-

rations in M. Then the size of ⊥B,M,d is bounded by (r|M|j+j−)dj
+
, where r is a constant

called the “recall” number (see [Mug95] for details). For each literal in ⊥B,M,d there is 1

vertex in X. Also, for every argument in each literal in ⊥B,M,d there is a vertex in Y .

It is straightforward to see that the size of the corresponding clause-graph is bounded by

(r|M|j+j−)dj
+

(1 + j+ + j−).

Finally, we relate the clausal explanations found by some MDIE systems using the order-

ing ⪯θ defined over clauses in [Plo70].11 Given background knowledge B and a clause e,

we will say a clause C is a clausal explanation for e if B ∪ {C} |= e.

Remark 5.5 (Relation to Clausal Explanations). Let ⊥B,M,d(e) be the ground most-

specific definite-clause using MDIE. Let C be a clause (not necessarily ground). We show

the following: If Cθ ⊆ ⊥B,M,d(e) and Cθ ∈ LB,M,d, then there exists a clause-graph CG′

s.t. CG′ ⪯cg ClauseToGraph(⊥B,M,d(e)) and GraphToClause(CG′) = Cθ.

Denoting ⊥B,M,d(e) as ⊥(e) and ClauseToGraph(⊥B,M,d) as CG⊥(e), the relationships

described in this remark is shown diagrammatically as:

11C1 ⪯θ C2 if there exists some substitution θ s.t. C1θ ⊆ C2. By convention C1 is said to be more-general
than C2, and C2 is said to be more-specific than C1. It is known that if C1 ⪯θ C2, then C1 |= C2.

107

Let ClauseToGraph(⊥B,M,d(e)) = (G,ψ), with G = (X, Y,E). In the following,

Pos(l) = p if l = ¬p is a negative literal, otherwise Pos(l) = l. Consider the structure

CG′ = (G′, ψ′), with G′ = (X ′, Y ′, E ′) obtained as follows:

(a) X ′ = {xi : xi ∈ X, li ∈ Cθ, λi = Pos(li), ψ(xi) = (λi, µi)};

(b) E ′ = {(xi, yj) : xi ∈ X ′, (xi, yj) ∈ E} ∪ {(yj, xi) : xi ∈ X ′, (yj, xi) ∈ E};

(c) Y ′ = {yj : (xi, yj) ∈ E ′ or (yj, xi) ∈ E ′};

(d) For v ∈ X ′ ∪ Y ′, ψ′(v) = ψ(v).

It is evident that G′ is a directed bipartite graph, and ψ′ is defined for every vertex in

G′. So, CG′ ∈ G. By construction, CG′ has the following properties: (i) X ′ ⊆ X and

Y ′ ⊆ Y ; (ii) E ′ ⊆ E; and (iii) ψ′ ⊆ ψ. Therefore CG′ ⪯cg (G,ψ). Since the vertices in

X ′ are obtained using only the literals in Cθ, it follows that GraphToClause(CG) = Cθ.

Since Cθ ⊆ ⊥B,M,d(e), Cθ |= ⊥B,M,d(e). Further, since C ⪯θ Cθ, C |= Cθ. It follows

that B ∪ C |= B ∪ ⊥B,M,d(e). Since B ∪ ⊥B,M,d(e) |= e, then B ∪ C |= e. That is, C is a

clausal explanation for e.

The bottom-graphs defined here are not immediately suitable for GNNs for the task

of graph-classification. Some graph-transformations are needed before providing them as

input to a GNN. We describe these transformations next.

5.2.4 Transformations for Graph Classification by a GNN

We now describe functions used to transform bottom-graphs into a form suitable for the

GNN implementations we consider in this chapter. The definite-clause representation

of graphs that we use (an example follows below) contains all the information about

the graph in the antecedent of the definite-clause. The following function extracts the

corresponding parts of the bottom-graph.

Definition 5.12 (Antecedent-Graphs). We define function Antecedent : G → G as

follows. Let (G,ψ) ∈ G, where G = (X, Y,E) is a directed bipartite graph. Let Xh =

{x ∈ X : ψ(x) = (λ, µ)with µ = modeh(·)}. We define (G′, ψ′) where G′ = (X ′, Y ′, E ′)

such that

108

• X ′ = X −Xh,

• Y ′ = {y ∈ Y : ∃x ∈ X ′ s.t. (x, y) ∈ E or (y, x) ∈ E},

• E ′ = E − {(vi, vj) : vi ∈ Xh} − {(vj, vi) : vi ∈ Xh},

and ψ′(vi) = ψ(vi) for all vi ∈ X ′ ∪ Y ′. Then Antecedent((G,ψ)) = (G′, ψ′).

Most GNN implementations, including those used in this chapter, require graphs

to be undirected [Ham20]. Furthermore, an undirected graph representation allows an

easy exchange of messages across multiple relations (the X-nodes) resulting in unfolding

their internal dependencies. We define a function that converts directed clause-graphs to

undirected clause-graphs as follows:

Definition 5.13 (Undirected Clause-Graphs). We define a function UGraph : G → G
as follows. Let (G,ψ) ∈ G, where G = (X, Y,E) is a directed bipartite graph. We define

(G′, ψ′), where G′ = (X ′, Y ′, E ′) such that

• X ′ = X,

• Y ′ = Y ,

• E ′ = E ∪ {(vj, vi) : (vi, vj) ∈ E},

and ψ′(vi) = ψ(vi) for all vi ∈ X ′ ∪ Y ′. Then UGraph((G,ψ)) = (G′, ψ′).

In fact, graphs for GNNs are not actually in G. GNN implementations usually re-

quire vertices in a graph to be labelled with numeric feature-vectors. This requires a

modification of the vertex-labelling to be a function from vertices to real-vectors of some

finite length. The final transformation converts the vertex-labelling of a graph in G into

a suitable form.

Definition 5.14 (Vectorise). Let (G,ψ) ∈ G, where G = (X, Y,E). Assume we are given

a set of modes M. Let Γ# be the set of all type-names γ ∈ Γ− {R,#R} such that #γ in

some mode µ ∈ M. Let T# ⊆ T be the set of ground-terms of types in Γ#.
12

For v ∈ X ∪ Y , let us define the following four functions from X ∪ Y to the set of all

12That is, Γ# is the set of all #-ed, non-numeric type-names in M, and T# is the set of all ground-terms
of #-ed non-numeric types.

109

real vectors of finite length:

fρ(v) =

onehot(P, r) if v ∈ X, h(v) = (λ, ·) and predsym(λ) = r

0|P | otherwise

fγ(v) =

onehot(Γ, γ) if v ∈ Y and h(v) = (τ, γ)

0|Γ| otherwise

fτ (v) =

onehot(T#, τ) if v ∈ Y and h(v) = (τ,#γ) and γ ̸∈ R

0|T#| otherwise

fR(v) =

[τ] if v ∈ Y and h(v) = (τ,#R)

01 otherwise

where 0d denotes the zero-vector of length d; predsym(l) is a function that returns the

name and arity of literal l; and onehot(S, x) denotes a one-hot vector encoding of x ∈ S.13

Let V ectorise be a function defined on G as follows: V ectorise((G,ψ)) = (G,ψ′)

where ψ′(v) = fρ(v)⊕ fγ(v)⊕ fτ (v)⊕ fR(v) for each v ∈ X ∪ Y . Here ⊕ denotes vector

concatenation.

We note that the vectors in the vertex-labelling from V ectorise should not be confused

with the vector obtained using the V ec function employed within a GNN (see Figure 4.1)

in section 4.1. The purpose of that function is to obtain a low-dimensional real-valued

vector representation for an entire graph (usually for problems of graph-classification).

Example 5.15. Recall the most-specific clause for the gparent(henry, john) in Exam-

ple 5.1:

gparent(henry, john)←
father(henry, jane), mother(jane, john), mother(jane, alice),

parent(henry, jane), parent(jane, john), parent(jane, alice).

The clause-graph and corresponding antecedent-graph are shown below.

Assume the following sets:

P = {gparent/2, father/2,mother/2, parent/2},

Γ = {person},

Γ# = ∅.

Additionally, since the mode-language in Example 5.1 does not have any #’ed arguments,

T# = ∅. Therefore, fρ is a 4-dimensional (one-hot encoded) vector (since |P | = 4); fγ

13A one-hot vector encoding of an element x in a set S assumes a 1-1 mapping N from elements of S to
{1, . . . , |S|}. If x ∈ S and onehot(S, x) = v then v is a vector of dimension |S| s.t. N(x)’th entry in v
is 1 and all other entries in v are 0.

110

is a 1-dimensional vector (since |Gamma| = 1); fτ is a 1-dimensional vector containing

0 (since |T#| = 0); and fR is a 1-dimensional vector containing 0 (since there are no

#’ed numeric terms)). A full tabulation of the vectors involved is provided below, along

with the new vertex-labelling that results. In the table, the vertex labels are as obtained in

Example 5.12; γ1 is used to denote the type person.

v ψ(v) fρ(v)⊤ fγ(v)⊤ fτ (v)⊤ fR(v)⊤ ψ′(v)⊤

x2 (λ2, µ2) [0, 1, 0, 0] [0] [0] [0.0] [0, 1, 0, 0, 0, 0, 0.0]

x3 (λ3, µ3) [0, 0, 1, 0] [0] [0] [0.0] [0, 0, 1, 0, 0, 0, 0.0]

x4 (λ4, µ3) [0, 0, 1, 0] [0] [0] [0.0] [0, 0, 1, 0, 0, 0, 0.0]

x5 (λ5, µ4) [0, 0, 0, 1] [0] [0] [0.0] [0, 0, 0, 1, 0, 0, 0.0]

x6 (λ6, µ4) [0, 0, 0, 1] [0] [0] [0.0] [0, 0, 0, 1, 0, 0, 0.0]

x7 (λ7, µ4) [0, 0, 0, 1] [0] [0] [0.0] [0, 0, 0, 1, 0, 0, 0.0]

y1 (τ1, γ1) [0, 0, 0, 0] [1] [0] [0.0] [0, 0, 0, 0, 1, 0, 0.0]

y2 (τ2, γ1) [0, 0, 0, 0] [1] [0] [0.0] [0, 0, 0, 0, 1, 0, 0.0]

y3 (τ3, γ1) [0, 0, 0, 0] [1] [0] [0.0] [0, 0, 0, 0, 1, 0, 0.0]

y4 (τ4, γ1) [0, 0, 0, 0] [1] [0] [0.0] [0, 0, 0, 0, 1, 0, 0.0]

The following figures show: (a) the antecedent graph and (b) the vectorised, undirected,

antecedent graph for the gparent example. We call the structure in (b) as a BotGNN-

Graph, the definition of which is provided later.

The example above does not have any #-ed arguments in the modes M. In the

following example, we consider modes that have #-ed arguments (of types: R and not R)

and repeat the same exercise: starting with the construction of the bottom-graph. Then

we show how the function V ectorise results in a vectorised graph suitable for a GNN.

Example 5.16. Let M be the set of modes {µ1, µ2, µ3} where µ1 = modeh(p(+R)),

µ2 = modeb(q(+R,#colour)), µ3 = modeb(r(#colour,#R)). Let the depth-limit d =

1 and that the background knowledge contains the type-definitions colour(white) and

111

colour(black). Let C be a ground definite-clause p(1.0) ← q(1.0, white), r(white, 1.0).

The following are obtained based on the definitions:

• C = {p(1.0),¬q(1.0, white),¬r(white, 1.0)}.

• ΛC = {λ1, λ2, λ3}, where λ1 = p(1.0), λ2 = q(1.0, white), λ3 = r(white, 1.0).

• C is in LB,M,d since there is at least one λµ-sequence for C. Here we have one such

sequence: ⟨(λ1, µ1), (λ2, µ2), (λ3, µ3)⟩.

• Lits(C) = {(λ1, µ1), (λ2, µ2), (λ3, µ3)}.

• Terms(C) = {(λ1, µ1, ⟨1⟩), (λ2, µ2, ⟨1⟩), (λ2, µ2, ⟨2⟩), (λ3, µ3, ⟨1⟩)(λ3, µ3, ⟨2⟩)}.

• TermType((λ1, µ1, ⟨1⟩)) = (1.0,R), TermType((λ2, µ2, ⟨1⟩)) = (1.0,R),

TermType((λ2, µ2, ⟨2⟩)) = (white,#colour), TermType((λ3, µ3, ⟨1⟩)) = (1.0,#R)

TermType((λ3, µ3, ⟨2⟩)) = (white,#colour).

Then, ClauseToGraph(C) = (G,ψ), where G = (X, Y,E) s.t.

• X = {x1, x2, x3}, where x1 = hx((λ1, µ1)), x2 = hx((λ2, µ2)) and x3 = hx((λ3, µ3))

• Y = {y1, y2, y3}, where y1 = hy((1.0,R)), y2 = hy((white,#colour)), y3 = hy((1.0,#R))

• E = {(y1, x1), (y1, x2), (x2, y2), (x3, y2), (x3, y3)},

and the vertex-labelling ψ is given as follows: ψ(x1) = (λ1, µ1), ψ(x2) = (λ2, µ2), ψ(x3) =

(λ3, µ3), ψ(y1) = (1.0,R), ψ(y2) = (white,#class), ψ(y3) = (1.0,#R).

In this example, we assume the following sets: P = {p/1, q/2, r/2}, Γ = {R,#colour,#R},
Γ# = {#colour}, T# = {white, black}.

The graph (G,ψ) constructed above is the bottom-graph for this particular example.

The feature-vectors obtained from the functions in V ectorise are tabulated below. In the

table, τ1 = 1.0, τ2 = white, γ1 = R, γ2 = #colour, γ3 = #R.

v ψ(v) fρ(v)⊤ fγ(v)⊤ fτ (v)⊤ fR(v)⊤ ψ′(v)⊤

x2 (λ2, µ2) [0, 1, 0] [0, 0, 0] [0, 0] [0.0] [0, 1, 0, 0, 0, 0, 0, 0, 0.0]

x3 (λ3, µ3) [0, 0, 1] [0, 0, 0] [0, 0] [0.0] [0, 0, 1, 0, 0, 0, 0, 0, 0.0]

y1 (τ1, γ1) [0, 0, 0] [1, 0, 0] [0, 0] [0.0] [0, 0, 0, 1, 0, 0, 0, 0, 0.0]

y2 (τ2, γ2) [0, 0, 0] [0, 1, 0] [1, 0] [0.0] [0, 0, 0, 0, 1, 0, 1, 0, 0.0]

y3 (τ1, γ3) [0, 0, 0] [0, 0, 1] [0, 0] [1.0] [0, 0, 0, 0, 0, 1, 0, 0, 1.0]

The following figure shows how the final vectorised graph is constructed from the bottom-

graph (the dotted square-box and the dotted arrow are shown to indicate the vertex speci-

fying the head of the clause C):

112

The functions Antecedent, UGraph and V ectorise transform bottom-graphs into a form

suitable for GNNs by straightforward composition.

Definition 5.15 (Graph Transformation). We define a transformation function over G
as TransformGraph(G) = V ectorise(UGraph(Antecedent((G,ψ)))).

We now have all the pieces for obtaining graphs suitable for GNNs.

Definition 5.16 (BotGNN Graphs). Given a data instance e ∈ E, background knowledge

B, a set of modes M, a depth-limit d as before, we define BotGNNGraphB,M,d(e) ≡
BotGNNGraph(e) = TransformGraph(BotGraphB,M,d(e)).

Figure 5.2 summarises the sequence of computations used in this chapter. We will use

the term BotGNN to describe GNNs constructed from BotGNN graphs.

Figure 5.2: Construction and use of bottom-graphs for use by GNNs in this chapter. We
note that constituting the transformation of bottom-graphs are for the GNN implemen-
tations used in this chapter.

Procedure 6 and Procedure 7 use the definitions, we have introduced, to construct

and test BotGNN models. In practice, Step 3 of Procedure 6 and Step 3 of Procedure 7

involve some pre-processing that converts the information in BotGNN graphs into a

syntactic form suitable for the implementations used. The procedures assume that data

provided as graphs can be represented as definite clauses (Steps 3 in Procedure 6 and 3

in Procedure 7). We illustrate this with an example.

Example 5.17. The chemical Tacrine is a drug used in the treatment of Alzheimer’s

disease. It’s molecular formula is C13H14N2, and its molecular structure is shown in

diagrammatic form below:

113

One representation of this molecular graph as a definite clause is

graph(tacrine)←
atom(tacrine, a1, c),

atom(tacrine, a2, c),
...

atom(tacrine, a13, c),

atom(tacrine, a14, n),
...

bond(tacrine, a1, a2, 1),

bond(tacrine, a2, a3, 2),
...

More generally, a graph g = (V,E, ψ, ϕ) (where V denotes the vertices, E denotes

the edges, ψ and ϕ are vertex and edge-label mappings, respectively) can be transformed

into definite clause of the form graph(g) ← Body, where Body is a conjunction of

ground-literals of the form vertex(g, v1), vertex(g, v2), . . . ; edge(g, e1), edge(g, e2), . . . ;

vlabel(g, v1, ψ(v1)), vlabel(g, v2, ψ(v2)), . . . ; and elabel(g, e1, ψ(e1)), elabel(g, e2, ψ(e2)),

. . . and so on where V = {v1, v2, . . .}, E = {e1, e2, . . .}. More compact representations

are possible, but in the experimental section following, we will be using this kind of simple

transformation (for molecules, the transformation is done automatically from a standard

molecular representation).

Procedure 6 Procedure to construct a BotGNN model, given training data Dtr =
{(gi, yi)}N1 , where each gi is a graph and yi is the class-label for gi, Background knowledge
B, modes M, depth-limit d, and some procedure TrainGNN that trains a graph-based
neural network

1: procedure TrainBotGNN(Dtr, B, M, d, TrainGNN)
2: D′

tr = { (g′i, yi) : (gi, yi) ∈ Dtr, ei be a ground definite-clause representing gi,
g′i = BotGNNGraphB,M,d(ei) }

3: Let BotGNN = TrainGNN(D′
tr)

4: return BotGNN

5.2.5 Note on Differences to Vertex-Enrichment

In this section we clarify some differences of BotGNNs with the approach of vertex-

enrichment in GNNs (or VEGNNs) discussed in Chapter 4. An immediate difference is

in the nature of the graphs handled by the two approaches. Broadly, VEGNNs require

114

Procedure 7 Procedure to obtain predictions of a BotGNN model on a data set given
background knowledge B, modes M, depth-limit d, and data D consisting of a set of
graphs {gi}N1
1: procedure TestBotGNN(D, B, M, d)
2: Let D′ = {(gi, g′i) : gi ∈ D, ei is the definite-clause representation of gi, g

′
i =

BotGNNGraphB,M,d(ei)}
3: Let Pred = {(gi, ŷi) : (gi, g

′
i) ∈ D′, ŷi = BotGNN(g′)}

4: return Pred

data in a graphical form. VEGNNs retain the most of the original graph-structure, but

modify the feature-vectors associated with each vertex of the graph (more on this below).

BotGNNs on the other hand do not require data to be a graph. Instead, any data

representable as a definite clause are reformulated using the bottom-clause into BotGNN

graphs. Recall these are bipartite-graphs, in which both vertices and their labels have a

different meaning to the graphs in VEGNNs.

A subtler difference between BotGNNs and VEGNNs arises from how the relational

information is included within the graphs constructed in each case. The difference is best

illustrated by an example below.

Example 5.18. Suppose we consider a molecule containing the atoms and bonds, and

we want to include the 6-ary relation of a benzene ring as shown below.

In VEGNNs, graphs are represented as tuples of the form (V,E, σ, ψ, ϕ), where V is the

set of vertices (here atoms in the molecule); E denotes the edges (bonds in the molecule);

σ is a neighbourhood function; ψ denotes an initial vertex-labelling; and ϕ denotes an

initial edge-labelling. For each v ∈ V , let ψ(v) be a real-valued vector of finite dimension.

In Chapter 4, any n-ary relation in domain-knowledge is treated as a hyperedge, where a

hyperedge is a set of n vertices in the graph. For any vertex v in a graph, let h(v) denote

the set of predicate symbols such that the corresponding hyper-edge contains v. Let g/1 be

a function that maps sets of predicate-symbols to a fixed-length Boolean-valued vector (a

“multi-hot” encoding). Thus, a VEGNN is a GNN that operates on graphs obtained from

labelled graphs of the form (V,E, σ, ψV , ϕ), where ψV (v) = ψ(v)⊕g(h(v)) (here ⊕ denotes

a concatenation operation). In a VEGNN, h(v) is {benzene/6} for v = v1, . . . , v10 in the

graph below (representing the compound naphthalene):

115

Thus, the information that v3, v4 are members of 2 different benzene rings is not captured

in the VEGNNs vertex-labelleing, and we have to rely on the GNN machinery to re-derive

this information from the graph structure (if this information is needed). In a BotGNN

on the other hand, the two benzene rings are separate vertices in the bipartite graph, which

share edges to vertices representing v3 and v4. The broad structure of the VEGNN (only

vertex-labels are shown for clarity) and the BotGNN graphs for naphthalene are shown in

figures (a) and (b) respectively:

ψV /1 in (a) refers to the vertex-encoding function in Chapter 4, and ψ′ in (b) refers to

the function defined in Defn. 5.14. For the experimental data in this chapter, the vertex-

encoding in Chapter 4 results in vectors whose dimensions are about 10 times more than

the ψV /1 from Defn. 5.14.

The approach to n-ary relations employed by VEGNNs is thus somewhat akin to a

clique-expansion of the graph containing vertices for terms. In a clique-expansion, all

vertices in a hyper-edge—elements of some n-ary relation—are connected together by

a labelled hyper-edge. This can introduce a lot of new edges, and some mechanism is

needed to distinguish between multiple occurrences of the same relation (an example is

the multiple occurrences of benzene rings above). VEGNNs can be seen as achieving the

effect of such a clique-expansion, without explicitly adding the new edges, but they do

not address the problem of multiple occurrences. BotGNNs can be seen instead as a star-

expansion of the graph containing vertices for terms. In such a star-expansion, new nodes

denoting the relation are introduced, along with edges between the relation-vertex and

the term-vertices that are part of the relation (that is, the hyper-edge). Star-expansions

of graphs thus contain 2 kinds of vertices, which is similar to the graph constructed by a

BotGNN.

116

5.3 Empirical Evaluation

5.3.1 Aims

Our aim in this section is to investigate the utility of using BotGNNs as a technique for

including domain-knowledge. That is,

• We investigate whether the performance of a BotGNN that includes domain-knowledge

using MDIE is better than the performance of a GNN that does not include domain-

knowledge.

As before, later in the chapter, we will also provide additional comparisons against all

other methods developed so far in the dissertation.

5.3.2 Materials

Data and Background Knowledge

For the empirical evaluation of our proposed BotGNNs, we use the same 73 benchmark

datasets that are used in our studies on DRMs (in Chapter 3) and VEGNNs (in Chap-

ter 4). We use the same background knowledge used in the previous two chapters. Each

dataset consists of a set of chemical compounds, which are then converted into bottom-

graphs. A simple summary of the resulting bottom-graph datasets is provided below.

of Avg # of Avg. of Avg. of Avg. of

datasets instances |X| |Y | |E|
73 3032 81 42 937

Figure 5.3: Dataset summary. Each bottom-graph can be represented using (G, ·), where
G = (X, Y,E), where X represents the vertices corresponding to the relations, Y rep-
resents the vertices corresponding to ground terms in the bottom-clause constructed by
MDIE, and E represents the edges between X and Y . The last 3 columns are the average
number of X, Y and E in each bottom-graph in a dataset.

Algorithms and Machines

The datasets and the background knowledge are written in Prolog. We use the ILP engine,

Aleph [Sri01] for the construction of bottom-clauses using MDIE. A Prolog program is

then used to extract the relations and ground terms from the bottom-clause. We use

YAP compiler for execution of all our Prolog programs. The files containing the relations

and ground terms are then parsed by UNIX and MATLAB scripts to construct bottom-

graph datasets in a format suitable for GNNs for which we follow the format prescribed

117

in [KKM+16]. These details are mainly representations of adjacency matrix, vertex labels

(feature vectors), class labels, etc.

The GNN variants used here are described in the next section. All the experiments are

conducted in a Python environment. The GNN models have been implemented by using

the PyTorch Geometric library [FL19]—a popular geometric deep learning extension for

PyTorch [PGM+19] enabling easier implementations of various graph convolution and

pooling methods.

For all the experiments, we use a machine with Ubuntu (16.04 LTS) operating system,

and hardware configuration such as: 64GB of main memory, 16-core Intel Xeon processor,

a NVIDIA P4000 graphics processor with 8GB of video memory.

5.3.3 Method

Let D be a set of data-instances represented as graphs {(g1, y1), . . . , (gN , yN)}, where

yi is a class label associated with the graph gi. We also assume that we have access to

background-knowledgeB, a set of modes M, a depth-limit d. Our method for investigating

the performance of BotGNNs uses is straightforward:

(1) Randomly split D into DTr and DTe;

(2) Let BotGNN be the model from Procedure 6 (TrainBotGNN) with backround

knowledge B, modes M, depth-limit d, training data DTr and some GNN imple-

mentation (see below);

(3) Let GNN be the model from the GNN implementation without background knowl-

edge, and with DTr;

(4) Let D′
Te = {gi : (gi, yi) ∈ DTe};

(5) Obtain the predictions for D′
Te of BotGNN using Procedure 7 (TestBotGNN)

with background knowledge B, modes M, and depth-limit d;

(6) Obtain the predictions for D′
Te using GNN ; and

(7) Compare the performance of BotGNN and GNN .

We closely follow the method used in Chapter 4 for the construction of BotGNNs.

Relevant details are as follows:

• We have used a 70:30 train-test split for each of the datasets. 10% of the train-set

is used as a validation set for hyperparameter tuning.

118

• The general workflow involved in GNNs was described in Chapter 4 (refer sec-

tion 4.1). A diagram of the components involved in implementing that workflow

for constructing a BotGNN is shown in Figure 5.4. As shown in the figure, a GNN

in our implementations consists of three graph convolution blocks and three graph

pooling blocks. The convolution and pooling blocks interleave each other (that is,

C-P-C-P-C-P).

Figure 5.4: Components involved in implementing the workflow in section 4.1 for Bot-
GNN models. ‘Conv’ and ‘Pool’ refer to the graph-convolution and graph-pooling oper-
ations, respectively. The ‘Readout’ operation constructs the representation of a graph
by accumulating information from all the vertex in the graph obtained after the pool-
ing operation. The final graph-representation is obtained in the READOUT block by an
element-wise sum (shown as ⊕) of the individual graph representations obtained after
each AGGREGATE-COMBINE block. MLP stands for Multilayer Perceptron.

• The graph pooling block uses self-attention pooling [LLK19] with a pooling ratio

of 0.5. We use the graph-convolution formula proposed in [KW17] for calculating

the self-attention scores.

• Due to the large number of experiments (resulting from multiple datasets and mul-

tiple GNN variants), the hyperparameters in the convolution blocks are set to the

default values within the PyTorch Geometric library.

• We use a hierarchical pooling architecture that uses the readout mechanism pro-

posed by Cangea et al. [CVJ+18]. The readout block aggregates node features to

produce a fixed-size intermediate representation for the graph. The final fixed-

size representation for the graph is obtained by element-wise addition of the three

readout representations.

• The representation length (2m) is determined by using a validation-based approach.

The parameter grid for m is {8, 128}, representing a small and a large embedding,

respectively.

• The final representation is then fed as input to a 3-layered MLP. We use a dropout

layer with a fixed dropout rate of 0.5 after the first layer of MLP.

119

• The input layer of the MLP contains 2m units, followed by two hidden layers with

m units and ⌊m/2⌋ units, respectively. The activation function used in the hidden

layers is relu. The output layer uses logsoftmax activation.

• The loss function used is the negative log-likelihood between the target class-labels

and the predictions from the model.

• We denote the BotGNN variants as BotGNN1,...,5, based on the type of graph

convolution method used.

• We use the Adam optimiser [KB15] for training the BotGNNs (BotGNN1,...,5). The

learning rate is 0.0005, weight decay parameter is 0.0001, the momentum factors

are set to the default values of (β1, β2) = (0.9, 0.999).

• The maximum number of training epochs is 1000. The batch size is 128.

• We use an early-stopping mechanism [Pre98] to avoid overfitting during training.

The resulting model is then saved and can be used for evaluation on the independent

test-set. The patience period for early-stopping is fixed at 50.

• The predictive performance of a BotGNN model refers to its predictive accuracy

on the independent test-set.

• Comparison of the predictive performance of BotGNNs against GNNs and VEGNNs

is conducted using the Wilcoxon signed-rank test, using the standard implementa-

tion within MATLAB (R2018b).

5.3.4 Results

The quantitative comparisons of predictive performance of BotGNNs against baseline

GNNs are presented in Figure 5.6. The tabulation shows number of datasets on which

BotGNN has higher, lower or equal predictive accuracy. The principal conclusion from

these tabulations is: BotGNNs perform significantly better than their corresponding

counterparts that do not have access to any information other than the atom-and-bond

structure of a molecule achieving a gain in predictive accuracy of 5-8% across variants

as shown in the qualitative comparison shown in Figure 5.5. This is irrespective of the

variant of GNN used, suggesting that the technique is able to usefully integrate domain-

knowledge into learning. In overall, the results here provide sufficient evidence that

incorporating domain-knowledge into deep neural networks significantly improves their

predictive performance.

120

(a) GNN1 (median gain ≈ 6%) (b) GNN2 (median gain ≈ 5%)

(c) GNN3 (median gain ≈ 8%) (d) GNN4 (median gain ≈ 7%)

(e) GNN5 (median gain ≈ 6%)

Figure 5.5: Qualitative comparison of predictive performance of BotGNNs against Base-
line (that is, GNN variants without access to domain-relations). Performance refers to
estimates of predictive accuracy (obtained on a holdout set), and all performances are
normalised against that of baseline performance (taken as 1). No significance should be
attached to the line joining the data points: this is only for visual clarity.

Some Additional Comparisons

We now turn to a question of practical interest: Are BotGNNs better than V EGNNs

that are studied in the preceding chapter? To answer this question, we provide some

comparisons BotGNNs against V EGNNs for the same set of datasets and domain-

knowledge. The methodology adopted for this comparison is similar to what was done

for comparing BotGNNs against GNNs (refer subsection 5.3.3). Figure 5.7 provides

a tabulation of this comparison for all the variants of GNNs. The results suggest that

121

GNN Accuracy (BotGNN vs. GNN)

Variant Higher/Lower/Equal (p-value)

1 59/5/9 (< 0.001)

2 59/8/6 (< 0.001)

3 61/2/10 (< 0.001)

4 63/1/9 (< 0.001)

5 60/4/9 (< 0.001)

Figure 5.6: Comparison of predictive performance of BotGNNs against GNNs. The
tabulations are the number of datasets on which BotGNN has higher, lower or equal
predictive accuracy (obtained on a holdout set) than GNN . Statistical significance is
computed by the Wilcoxon signed-rank test.

BotGNNs perform significantly better than V EGNNs with access to the same back-

ground knowledge. This suggests that BotGNNs do more than the vertex-enrichment

approach used by V EGNNs.

GNN Accuracy (BotGNN vs. V EGNN)

Variant Higher/Lower/Equal (p-value)

1 54/11/8 (< 0.001)

2 61/9/3 (< 0.001)

3 54/10/9 (< 0.001)

4 55/11/7 (< 0.001)

5 52/9/12 (< 0.001)

Figure 5.7: Comparison of predictive performance of BotGNNs against V EGNNs. The
tabulations are the number of datasets on which BotGNN has higher, lower or equal
predictive accuracy (obtained on a holdout set) than a V EGNN . Statistical significance
is computed by the Wilcoxon signed-rank test.

In a previous section (subsection 5.2.5) we have described differences between Bot-

GNNs and VEGNNs arising from an encoding of the data into a bipartite graph rep-

resentation. Possible reasons for the significant difference in performance of BotGNNs

and V EGNNs are twofold: (1) The GNN variants are unable to use edge-label informa-

tion. In the VEGNN-style graphs for the data, this information corresponds to the type of

bonds. However, this information is contained in vertices associated with the bond-literals

in BotGNN-style graphs, which can be used by the GNN-variants; and (2) The potential

loss in relational information in VEGNN-style graphs as described in subsection 5.2.5. A

further difference, not apparent from the tabulations, is in the feature-vectors associated

with each vertex. For the data here, vertex-labels for VEGNNs described in Chapter 4

results in each vertex being associated with a 1400-dimensional vector. For BotGNNs,

this is about 130.

122

Next, we turn to the second question: Are BotGNNs better than propositionalisa-

tion? To answer this question, we provide a comparison of the predictive performance of

BotGNNs against the two different methods studied in Chapter 3, which are: (a) DRMs

constructed with relational features sampled using the hide-and-seek sampling, and (b)

MLPs constructed relational features constructed using Bottom-Clause Propositionalisa-

tion (BCP [FZG14]). For (a), the quantitative comparison between BotGNNs and DRMs

is provided in Figure 5.8 with different number of input features for a DRM. At the out-

set, it may look like DRMs are as good as BotGNNs, if provided with sufficient number

of relational features; and there arises one more question: Why should we bother using

BotGNNs at all? BotGNNs are more powerful and capable than DRMs for at least the

following reasons: (1) DRMs need to be provided with a sufficient number of relational

features (In Figure 5.8 this turns out to be 1000) to match the same level of performance

as a BotGNN; (2) DRMs need to be provided with an expressive set of relational features

to reach the same level of performance as a BotGNN; (3) For a DRM, there is significant

computational effort is required to draw these 1000 features using sampling. As discussed

in Chapter 3, the sampling procedure incurs a huge computational cost to select a set of

1000 features where selecting just one relational feature requires the following computa-

tional steps: sampling a lot more than one feature, evaluating them for their utilities, and

discarding the features with bad utilities. Whereas BotGNNs do not involve any such

sampling step and therefore the computational cost remains relatively minimal. So our

answer to the primary question of whether BotGNNs do more than propositionalisation

is a “yes”.

Accuracy (BotGNN vs. DRM)

GNN Higher/Lower/Equal (p-value)

Variant No. of features = 50 · · · No. of features = 500 No. of features = 1000

GNN1 64/8/1 (< 0.001) · · · 46/27/0 (0.15) 39/34/0 (0.98)

GNN2 63/9/1 (< 0.001) · · · 31/42/0 (0.17) 29/44/0 (0.05)

GNN3 65/7/1 (< 0.001) · · · 42/31/0 (0.66) 37/36/0 (0.46)

GNN4 65/7/1 (< 0.001) · · · 43/30/0 (0.18) 40/33/0 (0.72)

GNN5 67/5/1 (< 0.001) · · · 44/29/0 (0.26) 36/37/0 (0.83)

Figure 5.8: Quantitative comparison of predictive performance of BotGNNs against
DRMs. DRM denotes the Deep Relational Machine constructed using propositionali-
sation of relational features. The relational features for a DRM are sampled using the
hide-and-seek sampling strategy proposed in Chapter 3. The comparative performance
of BotGNNs against DRMs starts worsening after 1000 features, which are not shown
here. The tabulations are the number of datasets on which BotGNN has higher, lower
or equal predictive accuracy on a holdout-set. Statistical significance is assessed by the
Wilcoxon signed-rank test.

Our answer is further supported by the quantitative comparison provided in Figure 5.9

123

where the number of relational features constructed using BCP is approximately 18000-

52000 across the 73 datasets, which is far more than the length of the graph representation

constructed by a GNN. The results here reaffirm that though propositionalisation based

techniques are simple, and they require significant computational overhead to perform

well in practice.

GNN Accuracy (BotGNN vs. BCP+MLP)

Variant Higher/Lower/Equal (p-value)

1 58/10/5 (< 0.001)

2 58/11/4 (< 0.001)

3 61/6/6 (< 0.001)

4 62/6/5 (< 0.001)

5 60/6/7 (< 0.001)

Figure 5.9: Comparison of predictive performance of BotGNNs with an MLP constructed
using BCP-based relational features. The tabulations are the number of datasets on which
a BotGNN has higher, lower or equal predictive accuracy (obtained on a holdout set)
than BCP+MLP.

Further, a more useful difference between the BotGNN approach and propositional-

isation is that techniques relying on the latter usually separate the feature- and model-

construction steps. A BotGNN , like any GNN, constructs a vector-space embedding

for the graphs it is provided. However, this embedding is obtained as part of an end-

to-end model construction process. This can be substantially more compact than the

representation used by methods that employ a separate propositionalisation step (see

Figure 5.10).

Method Vector Representation Vector Dimension (Range)

BotGNN Real, dense 16–256

DRM Boolean, sparse 1000s

BCP+MLP Boolean, very sparse 18000–52000

Figure 5.10: Characterisation of vector-representation used for model-construction by
BotGNNs, DRMs and BCP+MLP. Minimum/maximum values of the range are only
shown to 3 meaningful digits (the actual values are not relevant here). The graph-
representations (also, called graph-embeddings) for BotGNNs are constructed internally
by the GNN. By “sparse” we mean that there are many 0-values, and by “very sparse”,
we mean the values are mostly 0.

Finally, we turn to a question that we have so far not considered in the disserta-

tion, namely: how well does a deep neural network with domain-knowledge compare

against an ILP learner? ILP represents the pre-eminent approach for dealing both with

relational data and symbolic domain-knowledge. Given the comparisons we have shown

124

so far, we will treat BotGNNs as the state-of-the-art for direct inclusion of symbolic

domain-knowledge into a GNN. Figure 5.11(a) shows a routine comparison of BotGNNs

against the Aleph system [Sri01], which is probably the most widely-used ILP engine

to date [CD20]. We caution against drawing the obvious conclusion, since the results

are obtained without attempting to optimise any parameters of the ILP learner (only

the minimum accuracy of clauses was changed from the default setting of 1.0 to 0.7:

this latter value has been shown to be more appropriate in many previous experimental

studies with Aleph). A better indication is in Figure 5.11(b), which compares BotGNN

performance on older benchmarks for which ILP results after parameter optimisation are

available. These suggest that BotGNN performance to be comparable to an ILP approach

with optimised parameter settings.14

GNN Accuracy (BotGNN vs. ILP)

Variant Higher/Lower/Equal (p-value)

1 62/7/4 (< 0.001)

2 60/9/4 (< 0.001)

3 61/7/5 (< 0.001)

4 62/6/5 (< 0.001)

5 62/4/7 (< 0.001)

(a)

Dataset ILP BotGNN

DssTox 0.73 0.76

Mutag 0.88 0.89

Canc 0.58 0.64

Amine 0.80 0.84

Choline 0.77 0.72

Scop 0.67 0.65

Toxic 0.87 0.85

(b)

Figure 5.11: Comparison of predictive performance of BotGNNs with an ILP learner
(Aleph system): (a) Without hyperparameter tuning in Aleph; (b) With hyperparameter
tuning. In (a), the tabulations are the number of datasets on which BotGNN has higher,
lower or equal predictive accuracy (obtained on a holdout set) than the ILP learner. In
(b), each entry is the average of the accuracy obtained across 10-fold validation splits (as
in [SKB03])

5.4 Summary

In this chapter, we proposed a general technique to construct graph neural networks from

relational data and symbolic domain-knowledge. Our experiments here re-validate our

claim on importance of the role of domain-knowledge. The significant improvements in

performance that we have observed support our claim that when training data available

are small, deep neural network models can benefit significantly from the inclusion of

14We note that parameter screening and optimisation is not routinely done in ILP. In [SR11] it is noted:
“Reports in the [ILP] literature rarely contain any discussion of sensitive parameters of the system or
their values. Of 100 experimental studies reported in papers presented between 1998 and 2008 to the
principal conference in the area, none attempt any form of screening for relevant parameters.”

125

domain-knowledge. We have also provided additional results that suggest that the tech-

nique may be doing more than a simple “propositionalisation” or “vertex-enrichment”.

The linking of symbolic and neural techniques, as is done in this chapter, provides an

interesting direction of research to neural-symbolic modelling.

126

Chapter 6

BotGNN as a System Component:

An Application to Drug Design∗

So far in the dissertation, we have focussed on developing techniques for including domain-

knowledge into deep neural networks, and on investigating–using large scale experiments–

if that improves the predictive performance of the deep neural network. For the network

types and techniques we propose, we have found that inclusion of domain-knowledge can

indeed improve the performance of deep-networks significantly. In this chapter, we show

how such a domain-enriched deep neural network can be used as a component in a large

engineered system. We focus on a problem in drug-design concerned with the generation

of new molecules for potential new drugs. Given the results from previous chapters, we

will use BotGNNs as the deep neural network technique with domain-knowledge.

6.1 The Problem

The development of a new drug is difficult, wasteful, costly, uncertain, and long [CHBP02,

Hai10]. AI techniques have been trying to change this [SWP+20], especially in the early

stages culminating in “lead discovery”. Figure 6.1 shows the steps involved in this stage

of drug-design. In the figure, library screening can be either done by actual laboratory

experiments (high-throughput screening) or computationally (virtual screening). This

usually results in many false-positives. Hit Confirmation refers to additional assays de-

signed to reduce false-positives. QSAR (quantitative- or qualitative structure-activity

relations) consists of models for predicting biological activity using physico-chemical prop-

erties of hits. The results of prediction can result in additional confirmatory assays for

hits, and finally in one or more “lead” compounds that are taken forward for pre-clinical

∗The content of this chapter is based on the following:
T. Dash, A. Srinivasan, L. Vig, A. Roy, “Using domain-knowledge to assist lead discovery in early-stage
drug design”, International Conference on Inductive Logic Programming, 2021; https://doi.org/10.
1007/978-3-030-97454-1_6.

127

https://doi.org/10.1007/978-3-030-97454-1_6
https://doi.org/10.1007/978-3-030-97454-1_6

testing. This chapter focuses on the problem of lead discovery that goes beyond the effi-

cient identification of chemicals within the almost unlimited space of potential molecules.

This space has been approximately estimated at about 1060 molecules. A very small

fraction of these have been synthesised in research laboratories and by pharmaceutical

companies. An even smaller number are available publicly: the well-known ChEMBL

database [GHN+17] of drug-like chemicals consists of about 106 molecules. Any early-

stage drug-discovery pipeline that restricts itself to in-house chemicals will clearly be

self-limiting. This is especially the case if the leads sought are for targets in new diseases,

for which very few “hits” may result from existing chemical libraries. While a complete

(but not exhaustive) exploration of the space of 1060 molecules may continue to be elusive,

we would nevertheless like to develop an effective way of sampling from this space.

Figure 6.1: Early-stage drug-design (adapted from [WBS+15]).

We would like to implement the QSAR module as a generator of new molecules, con-

ditioned on the information provided by the hit assays, and on domain-knowledge. Our

position is that inclusion of domain-knowledge allows the development of more effective

conditional distributions than is possible using just the hit assays. Figure 6.2 is a dia-

grammatic representation of an ideal conditional generator of the kind we require. The

difficulty of course is that none of the underlying distributions are known. In this chap-

ter, we describe a neural-symbolic implementation to construct approximations for the

distributions.

Figure 6.2: An ideal conditional generator for instances of a random-variable denoting
data (X) given a value for a random-variable denoting labels (Y) and domain-knowledge
(B). Here, Z ∼ D denotes a random variable Z is distributed according to the distribu-
tion D. If the distributions shown are known, then a value for X is obtainable through
the use of Bayes rule, either exactly or through some form approximate inference.

We are interested in generating new small molecules which could act as inhibitors of

a biological target, when there is limited prior information on target-specific inhibitors.

128

This form of drug-design is assuming increasing importance with the advent of new disease

threats for which known chemicals only provide limited information about target inhibi-

tion [MR19, PIT18]. The initial studies were focused on exploring vast yet unexplored

chemical space for a better screening library. In [SKTW17], a recurrent neural network

(RNN) based generative model was trained with a large set of molecules and then fine-

tuned with small sets of molecules, which are known to be active against the target. Some

other works focus on drug-like property optimization, which helped in biasing the models

to generate molecules with specific biological or physical properties of interest. Deep re-

inforcement learning has been very effective in constructing generative models that could

generate novel molecules with the target properties [PIT18, BMO+21, SFK+19]. The

efficiency of these kinds of models to generate chemically valid molecules with optimized

properties has improved significantly [KBBR21, BMO+21]. There are also attempts to

build molecule generation models against novel target proteins, where there is a limited

ligand dataset for training the model [BKBR21]. Recurrent Neural Networks (RNNs) are

a popular choice for molecule generation. For example, [GMLS20] propose a bidirectional

generative RNN, that learns SMILES strings in both directions allowing it to better ap-

proximate the data distribution. Attention-based sequence models such as transformers

have recently been used for protein-specific molecule generation [Gre21]. There are also

generative models, for instance, masked graph modelling in [MMBC21], that attempts to

learn a distribution over molecular graphs allowing it to generate novel molecule without

requiring to deal with sequences. Although the works referred here are shown to be ef-

fective, they are often purely deep neural network-based. It is well-known that such deep

generative models are data-hungry, and require a large-amount of data (100s of 1000s) of

data instances to be able to generate novel data-instances. Furthermore, there has been

very little or no attempt in incorporating domain-knowledge into deep neural networks

for molecule generation.

In this chapter we investigate the construction of a deep generative model for molecules

that can utilise available domain-knowledge. The overall contributions of this chapter

are the following: (1) We propose a system consisting of two deep generative models (or

generators) and a discriminative model (or discriminator) working in collaboration with

each other for conditional generation of novel molecules; (2) We propose a methodology

to allow the generators to access the available domain-knowledge for molecule generation;

(3) We investigate our approach using the well-studied problem of inhibitors for the Janus

kinase (JAK) class of proteins [Wil89]. We assume first that if no data on inhibitors are

available for a target protein (JAK2), but a small number of inhibitors are known for

homologous proteins (JAK1, JAK3 and TYK2); and (4) We show that the inclusion of

relational domain-knowledge results in a potentially more effective generator of inhibitors

than simple random sampling from the space of molecules or a generator without access

to symbolic relations. We also show how samples from the conditional generator can be

129

used to identify potentially novel target inhibitors.

6.2 System Design and Implementation

We implement an approximation to the ideal conditional generator using a combination

of two generators and a discriminator (see Figure 6.3). We have decomposed the domain-

knowledge B in Figure 6.2 into constraints relevant just to the molecule-generator BG

and the knowledge relevant to the prediction of activity BD (that is, B = BG ∪ BD,

and P (X|B) = P (X|BG) and P (Y |X,B) = P (Y |X,BD)). The discriminator module

approximates the conditional distribution DY |X,B, and the combination of the uncondi-

tional generator and filter approximates the distribution DX|B. The conditional generator

then constructs an approximation to DX|Y,B. For the present, we assume the uncondi-

tional generator and discriminator are pre-trained: details will be provided below. The

discriminator is a BotGNN (refer Chapter 5). This is a form of graph-based neural net-

work (GNN) that uses graph-encodings of most-specific clauses (see [Mug95]) constructed

using symbolic domain-knowledge BD.

Figure 6.3: Training a conditional generator for generating “active” molecules. For the
present, we assume the generator (G1) and discriminator (D) have already been trained
(the G1 and D modules generate acceptable molecules and their labels respectively: the
D̂’s are approximations to the corresponding true distribution). The Transducer converts
the output of G1 into a form suitable for the discriminator. Actual implementations used
in the chapter will be described below.

The generator-discriminator combination in Figure 6.3 constitutes the QSAR module

in Figure 6.1. An initial set of hits is used to train the discriminator. The conditional

generator is trained using the initial set of hits and the filtered samples from the un-

conditional generator and the labels from the discriminator. Although out of the scope

130

of this chapter, any novel molecules generated could then be synthesised, subject to hit

confirmation, and the process repeated.

6.2.1 Generating Acceptable Molecules

The intent of module G1 is to produce an approximation to drawing samples (in our

case, molecules) from DX|BG
. We describe the actual BG used for experiments in sub-

section 6.3.1. For the present it is sufficient to assume that for any instance X = x, if

BG ∧ X = x |= 2 then P (x|BG) = 0. Here, we implement this by a simple rejection-

sampler that first draws from some distribution over molecules and rejects the instances

that are inconsistent with BG.

For drawing samples of molecules, we adopt the text-generation model proposed

in [BVV+16]. Our model takes SMILES representations [Wei88] of molecules as inputs

and estimates a probability distribution over these SMILES representations. Samples of

molecules are then SMILES strings drawn from this distribution.

The SMILES generation module is shown in Figure 6.4. The distribution of molecules

(SMILES strings) is estimated using a variational autoencoder (VAE) model. The VAE

model consists of an encoder and a decoder, both based on LSTM-based RNNs [HS97].

This architecture forms a SMILES encoder with the Gaussian prior acting as a regulariser

on the latent representation. The decoder is a special RNN model that is conditioned on

the latent representation.

Figure 6.4: Training a generator for acceptable molecules. Training data consists of
molecules, represented as SMILES strings, drawn from a database ∆. The VAE is a model
constructed using the training data and generates molecules represented by SMILES
strings. BG denotes domain-knowledge consisting of constraints on acceptable molecules.
The filter acts as a rejection-sampler: only molecules consistent with BG pass through.

The architecture of the VAE model is shown in Figure 6.5. The SMILES encoding

involves three primary modules: (a) embedding module: It constructs an embedding for

the input SMILE; (b) highway module: It constructs a gated information-flow module

based on highway network [SGS15]; (c) LSTM module: It is responsible for dealing with

sequences. The modules (b) and (c) together form the encoder module. The parameters

of the Gaussian distribution is learnt via two fully-connected networks, one each for µ

and σ, which are standard sub-structures involved in a VAE model. The decoder module

consists of LSTM layers followed by a fully-connected (FC) layer. We defer the details

on architecture-specific hyperparameters to subsection 6.3.2. The loss function used for

131

training our VAE model is a weighted version of the reconstruction loss and the KL-

divergence between VAE-constructed distribution and the Gaussian prior N (0,1).

Figure 6.5: Architecture of the VAE in Figure 6.4. m1,m2, n, k denote the number of
blocks. The decoder along with the µ and σ constitute the generator that generates
molecules in SMILES representation.

6.2.2 Obtaining Labels for Acceptable Molecules

The intent of module D is to produce an approximation to draw samples (in our case,

labels for molecules) from DY |X,BD
. We describe the actual BD used for experiments

in subsection 6.3.1. The discriminator in D is a BotGNN (see, Chapter 5), which is

a form of graph neural network (GNN) constructed from data (as graphs) and back-

ground knowledge (as symbolic relations or propositions) using mode-directed inverse

entailment (MDIE [Mug95]). In this work, data consists of graph-based representations

of molecules (atoms and bonds), and BD consists of symbolic domain-relations applicable

to the molecules. The goal of the discriminator is to learn a distribution over class-labels

for any given molecules. Figure 6.6 shows the block diagram of the discriminator block.

Figure 6.6: Discriminator based on BotGNN. “Logical” molecules refers to a logic-based
representation of molecules. Bottom-graphs are a graph-based representation of most-
specific (“bottom”) clauses constructed for the molecules by an ILP implementation based
on mode-directed inverse entailment.

6.2.3 Generating Active Molecules

The intent of module G2 is to produce an approximation to drawing from DX|Y,B. That

is, we want to draw samples of molecules, given a label for the molecule and domain-

knowledge B. We adopt the same architecture as the generator used for drawing from

DX|BG
above, with a simple modification to the way the SMILES strings are provided

as inputs to the model. We prefix each SMILES string with a class-label: y = 1 or

132

y = 0 based on whether the molecule is an active or inactive inhibitor, respectively. The

VAE model is also able to accommodate any data that may already be present about

the target, or about related targets (it is assumed that such data will be in the form of

labelled SMILES strings).

6.3 System Testing

Our aim is to perform a controlled experiment to assess the effect on system performance

of the inclusion of high-level symbolic domain-knowledge. Specifically, we investigate the

effect on the generation of new inhibitors for the target when (a) no domain-knowledge is

available in the form of symbolic relations (but some knowledge is available in a propo-

sitional form); and (b) some domain-knowledge is available in the form of symbolic rela-

tions. We intend to test if the system is able to generate possible new inhibitors in case

(a); and if the performance of the system improves in case (b).

6.3.1 Materials

Data

The data used are as follows: (a) ChEMBL dataset [GHN+17]: 1.9 million molecules

in SMILES representation; used to train the generator for legal molecules (G1); (b)

JAK2 [KBBR21]: 4100 molecules (3700 active) in SMILES representation; used to test

the conditional generator (G1) and to build the proxy model for hit confirmation (see

Method section below); (c) JAK2 Homologues (JAK1, JAK3 and TYK2) [KBBR21]:

4300 molecules (3700 active) in SMILES representation; used to train the discriminator

(D) and train the conditional generator (G2).

Domain-Knowledge

The domain constraints in BG are in the form of constraints on acceptable molecules.

These constraints are broadly of two kinds: (i) Those concerned with the validity of a

generated SMILES string. This involves various syntax-level checks, and is done here by

the RDKit molecular modelling package; (ii) Problem-specific constraints on some bulk-

properties of the molecule. These are: molecular weight is in the range (200, 700), the

octanol-water partition coefficients (logP) must be below 6.0, and the synthetic accessi-

bility score (SAS) must be below 5.0. We use the scoring approach proposed in [ES09]

to compute the SAS of a molecule based on its SMILES representation.

The domain-knowledge in BD broadly divides into two kinds: (i) Propositional, con-

sisting of the following bulk-molecular properties: molecular weight, logP, SAS, number

of hydrogen bond donors (HBD), number of hydrogen bond acceptor (HBA), number of

133

rotatable bonds (NRB), number of aromatic rings (NumRings), Topological Polar Sur-

face Area (TPSA), and quantitative estimation of drug-likeness (QED); (ii) Relational,

which is a collection of logic programs (written in Prolog) defining almost 100 relations

for various functional groups (such as amide, amine, ether, etc.) and various ring struc-

tures (such as aromatic, non-aromatic, etc.). More details on this background knowledge

can be found in Chapter 3.

Algorithms and Machines

We use the following softwares for our system implementation: (a) RDKit [L+06]: Molec-

ular modelling software used to compute molecular properties and check for the validity

of molecules; (b) Chemprop [SYS+20]: Molecular modelling software used to build a

proxy model for hit confirmation; (c) Transducer: In-house software to convert represen-

tation from SMILES to logic; (d) Aleph [Sri01]: ILP engine used to generate most-specific

clauses for BotGNN; (e) BotGNN: Discriminator for acceptable molecules capable of us-

ing relational and propositional domain-knowledge; (f) VAE [KW14]: Generative deep

neural network used for generators. We used PyTorch for the implementation of BotGNN

and VAE models, and Aleph was used with YAP.

Our experimental works were distributed across two machines: (a) The discriminator

(D) was built on a Dell workstation with 64GB of main memory, 16-core Intel Xeon

3.10GHz processors, an 8GB NVIDIA P4000 graphics processor; (b) The generators (G1,

G2) are built on an NVIDIA-DGX1 station with 32GB Tesla V100 GPUs, 512GB main

memory, 80-core Intel Xeon 2.20GHz processors.

6.3.2 Method

We describe the procedure adopted for a controlled experiment comparing system per-

formance in generating potential inhibitors when (a) domain-knowledge is restricted to

commonly used bulk-properties about the molecules; and (b) domain-knowledge includes

information about higher-level symbolic relations consisting of ring-structures and func-

tional groups, along with the information in (a). In either case, the method used to

generate acceptable molecules (from module G1 in Figure 6.3) is the same.

Let B0 denote domain-knowledge consisting of bulk-molecular properties used in the

construction of QSARs for novel inhibitors, B1 denote the definitions in B0 along with

first-order relations defining ring-structures and functional-groups used in the construc-

tion of QSAR relations, and BG denote the domain-knowledge consisting of constraints

on acceptable molecules (see “Domain-Knowledge” in subsection 6.3.1). Let DTr de-

note the data available on inhibitors for JAK1, JAK3 and TYK2; and DTe denote the

data available on inhibitors for JAK2 (see “Data” in subsection 6.3.1). Let ∆ denote a

database of (known) legal molecules. Our methodology is straightforward.

134

(1) Construct a generator for possible molecules given ∆ (the generator in module G1

of Figure 6.3).

(2) For i = 0, 1

(a) Let E0 = {(x, y)}|DTr|
1 , where x is a molecule in DTr and y is the activity label

obtained based on a threshold θ on the minimum activity for active inhibition;

(b) Let BD = Bi;

(c) Construct a discriminator (for module D in Figure 6.3) using E0 and the

domain-knowledge BD (see section 6.2);

(d) Sample a set of possible molecules, denoted as N , from the generator con-

structed in Step (1);.

(e) LetN ′ ⊆ N be the set of molecules found to be acceptable given the constraints

in BG (that is, N ′ is a sample from D̂X|BG
);

(f) For each acceptable molecule x obtained in Step (2)d above, let y be the label

with the highest probability from the distribution D̂Y |X,B constructed by the

discriminator in Step (2)c. Let E = {(x, y)}|N
′|

1 ;

(g) Construct the generator model (for module G2 in Figure 6.3) using E0 ∪ E;

(h) Sample a set of molecules, denoted as Mi, from the generator in Step (2)g;

(i) Let M ′
i ⊆ Mi be the set of molecules found to be acceptable given the con-

straints in BG (that is, M ′
i is a sample from DY |X,BG

);

(3) Assess the samples M0,M1 obtained in Step (2)h above for possible new inhibitors

of the target, using the information in DTe.

The following details are relevant:

• For experiments here ∆ is the ChEMBL database, consisting of approximately 1.9

million molecules. The generator also includes legality checks performed by the

RDKit package, as described in section 6.2.

• Following [KBBR21], θ = 6.0. That is, all molecules with pIC50 value ≥ 6.0 are

taken as “active” inhibitors;

• The discriminator in Step (2)c is a BotGNN. We follow the procedure and parame-

ters described in Chapter 5 to construct BotGNN. We use GraphSAGE [HYL17] for

the convolution block in the GNN (Refers to variant 4 in Chapter 5). This is based

on the results shown in Chapter 5 for the inclusion of symbolic domain-knowledge

for graph-based data, such as molecules.

135

• The generators in Steps (1) and (2)g are based on the VAE model described ear-

lier. The hyperparameters are as follows: vocabulary length is 100, embedding-

dimension is 300, number of highway layers is 2, number of LSTM layers in the

encoder is 1 with hidden size 512, and the type is bidirectional, number of LSTM

layers in the decoder is 2, each with hidden size 512, dimension of the latent repre-

sentation (z) is 100.

• To make our generator robust to noise and to be generalised, we also use a word-

dropout technique. This technique is identical to the standard practice of dropout

in deep learning [SHK+14] except that here the tokens to the decoder are replaced

by ‘unknown’ tokens with certain probabilities. Here we call it the word-dropout

rate and fix it at 0.5.

• The reconstruction loss coefficient is 7. We use cost-annealing [BVV+16] for the

KLD-coefficient during training. We use the Adam optimizer [KB15] with learning

rate of 0.0001; training batch-size is 256.

• In Step (2)d, |N | = 30, 000. The BG provided here results in |N ′| = 18, 000;

• In Step (2)h, |M0| = |M1| = 5000.

• The acceptable molecules M ′
0,M

′
1 after testing for consistency with BG are assessed

along the following two dimensions:

(a) Activity : In the pipeline described in Figure 6.1 assessment of activity would

be done by in vitro by hit confirmation assays. Here we use a proxy assess-

ment for the result of the assays by using an in silico predictor of pIC50 values

constructed from the data in DTe on JAK2 inhibitors. The proxy model is con-

structed by a state-of-the-art activity prediction package (Chemprop [SYS+20]:

details of this are provided in section B.3).1 We are interested in comparing

the proportions of generated molecules predicted as “active”;

(b) Similarity : we want to assess how similar the molecules generated are to the

set of active JAK2 inhibitors in DTe.
2 A widely used measure for this is the

Tanimoto (Jaccard) similarity: molecules with Tanimoto similarity > 0.75 are

usually taken to be similar. We are interested in the proportion of molecules

generated that are similar to known target inhibitors in DTe;

1Such a model is only possible in the controlled experiment here. In practice, no inhibitors would be
available for the target and activity values would have to be obtained by hit assays, or perhaps in silico
docking calculations.

2Again, this is feasible in the controlled experiment here. In practice, we will have no inhibitors for the
target, and we will have to perform this assessment on the data available for the target’s homologues
(DTr).

136

Each sample of molecules Mi drawn from the conditional generator can therefore

be represented by a pair (ai, bi) denoting the values of the proportions in (a) and

(b), and (c) above. We will call this pair the “performance summary” of the set

Mi.

• We compare performance summaries of sets of molecules in two ways. First, a per-

formance summary Pi = (ai, bi) can be compared against the performance summary

Pj = (aj, bj) in the obvious lexicographic manner. That is, Pi is better than Pj if

[(ai > aj)] or [(ai = aj)∧(bi > bj)]. Secondly, since all the elements of a performance

summary are proportions, we are able to assess if the differences in corresponding

values are statistically significant. This is done using a straightforward hypothesis

test on proportions. Given an estimate p of a proportion of n instances, the distri-

bution of proportions is approximately Normal, with mean p and s.d. σ =
√

p(1−p)
n

.

For testing the hypothesis pj < pi at a 95% confidence level the critical value from

tables of the standard normal distribution is 1.65. That is, if pj < 1.65σ we will

say the difference is statistically significant at the 95% level of confidence.

6.3.3 Results

A summary of the main results obtained is in Figure 6.7. The principal points in this

tabulation are these: (1) The performance of the system with BD = B1 is better than

with BD = B0 or simple random draw of molecules; and (2) The differences in propor-

tions for Activity and Similarity are statistically significant at the 95% confidence level.

Taken together, these results suggest that the inclusion of symbolic relations can make a

significant difference to the performance of the generation of active molecules.

We turn next to some questions of relevance to these results:

Better Discriminators? A question arises on whether the differences in proportions

would be different if we had compared against a different discriminator capable of using

BD = B0. Since B0 is essentially propositional in nature, any of the usual statistical

discriminative approaches could be used. We have found replacing the BotGNN with

an MLP with hyper-parameter tuning resulted in significantly worse performance than

a BotGNN with BD = B1. We conjecture that similar results will be obtained with

other kinds of statistical models. On the question of whether better discriminators are

possible for BD = B1, we note results in Chapter 5 show BotGNNs performance to be

better than techniques based on propositionalisation or a direct use of ILP. Nevertheless,

better BotGNN models than the one used here may be possible. For example, we could

construct an activity prediction model for the JAK2 homologues using a state-of-the-art

predictor like Chemprop. The prediction of this model could be used as an additional

molecular property by the BotGNN.

Better Generators? Our generators are simple language models based on variational

137

Qty. BD = B1 BD = B0 Random

|M | 5000 5000 5000

|M ′| 2058 2160 2877

Act 0.47 (0.01) 0.43 (0.01) 0.34 (0.01)

Sim 0.14 (0.01) 0.11 (0.01) 0.00 (0.00)

Figure 6.7: Summary of system performance. BD = B1 denotes that the discriminator
has access to both propositional and relational domain-knowledge; BD = B0 denotes that
the discriminator has access to propositional domain-knowledge only. Random denotes
a random draw of molecules from the unconditional molecule generator G1. M denotes
the set of molecules drawn (from the conditional generator, or from the unconditional
generator for Random). The results are compared against the performance of a method-
ology purely based on Deep Reinforcement Learning [KBBR21]. M ′ denotes the set of
acceptable molecules generated in the sample of M molecules (acceptable molecules sat-
isfy molecular constraints defined on molecular properties). Act denotes the proportion
of M ′ that are predicted active (the proxy model predicts an pIC50 ≥ 6.0); Sim denotes
the proportion of M ′ that are similar to active target inhibitors (Tanimoto similarity to
active JAK2 inhibitors > 0.75). The numbers in parentheses denote the standard devia-
tion in the corresponding estimate.

auto-encoders. Substantial improvements in generative language models (for example,

the sequence models based on attention mechanism [DCLT19, RWC+19]) suggest that

the generator could be much better. In addition, the rejection-sampling approach we use

to discard sample instances that fail constraints in BG is inherently inefficient, and we

suggest that the results here should be treated as a baseline. The modular design of our

system-design should allow relatively easy testing of alternatives.

Related to the question of discriminators is the role of ILP in this work. ILP is used

to include domain-knowledge in the construction of the BotGNN discriminator. How im-

portant was this use of ILP? A quantitative answer is difficult, but we are able to provide

indirect, qualitative evidence for the utility of ILP by comparison against a recent result

on the same data in [KBBR21]. That work differs from the one here in the following

ways: (a) No symbolic domain-knowledge is used in the discrimination step; and (b)

Substantially more computation is involved in developing the final generator–the equiv-

alent of module G2 here–through the use of reinforcement learning (RL). The principal

concern in [KBBR21] is to generate molecules similar to the active inhibitors for JAK2,

and the approach results in 5% of the sampled molecules being similar. The correspond-

ing results here are significantly higher: 14% (with BD = B1) and 11% (BD = B0). Both

results were obtained with BotGNNs, without requiring the additional episodic training

characteristic of RL. Therefore, we believe BotGNNs have played an important role, both

in prediction and in easing computation. Since ILP is necessary for the construction of a

138

BotGNN, their importance to the current system-design follows.3

Finally, we consider how samples from the conditional generator can be used to iden-

tify potential molecules for synthesis and testing in hit-confirmation assays. We propose

a selection based on a combination of (predicted) activity and similarity to the existing

inhibitors (when these are unavailable, we would have to rely on models constructed

with the target’s homologues). Using these measures, there are two surprising subsets

of molecules. Molecules in S are those that are similar to JAK2 inhibitors (Tanimoto

similarity > 0.75), but have a low predicted activity (substantially lower than 6.0); and

molecules in S are significantly different to the JAK2 inhibitors (Tanimoto similarity

< 0.5), but have a high predicted activity (substantially higher that 6.0).4 For the sam-

ple in this chapter, S = ∅. However, S ̸= ∅ and can provide interesting candidates

for novel inhibitors. We exemplify this with a chemical assessment of 3 elements from

S. This is shown in Figure 6.8. Molecule 1562 is identified as a possible candidate for

synthesis and hit confirmation.

6.4 Summary

In this chapter, we have shown how a deep neural network capable of including domain-

knowledge can be used as part of a larger system designed for a purpose other than simple

discrimination. As an example, we have considered the design of a system generating

novel molecules for early-stage drug design. We show how a graph-based neural network

with domain-knowledge is one component in a modular system design. Specifically, our

conclusions from this chapter are as follows: (1) We have constructed a complete end-

to-end neural-symbolic system that is capable of generating active molecules that may

not be in any existing database; (2) We have demonstrated usage of the system on

the classic chemical problem on Janus kinase inhibitors. Importantly, working with a

computational chemist, we have shown how the system can be used to discover an active

molecule based on entirely new scaffolds; (3) The results reaffirm the conclusions from

our Chapter 5 that inclusion of relational domain-knowledge through the use of ILP

techniques can significantly improve the performance of deep neural networks. Further,

our system design is intentionally modular, to allow “plug-and-play” of discriminators

and generators, allowing faster experimentation with better modules.

3Could we have directly used ILP for constructing the discriminator? Yes, but we draw attention to
evidence from the previous chapter that suggests that BotGNNs result in discriminators that are at
least comparable, and possibly better than those from the direct use of ILP.

4A good reason to consider dissimilar molecules is that it allows us to explore more diverse molecules.

139

ID Structure Descriptors Assessment

551
Act = 9.12

Sim = 0.15

This molecule has very low simi-
larity to known JAK2 inhibitors.
Also none of the groups specific to
JAK2 could be identified by the
substructure search. Discard this
molecule.

1548
Act = 9.04

Sim = 0.22

This molecule has very low simi-
larity to known JAK2 inhibitors.
Also none of the groups specific
to JAK2 could be identified by
the substructure search. However,
the sulfonamide group commonly
found in JAK family inhibitors
was found to be present (high-
lighted).

1562
Act = 9.49

Sim = 0.32

Despite low similarity to existing
JAK2 inhibitors, 1562 had one
JAK2-selective subgroup and a
group common to JAK inhibitors,
indicating potential to act as JAK
family inhibitor, but the selectiv-
ity to JAK2 cannot be confirmed.
Possibly interesting new scaffold
(highlighted) and worth pursuing
further.

Figure 6.8: A chemical assessment of possible new JAK2 inhibitors. The molecules are
from the sample of molecules from the conditional generator, that are predicted to have
high JAK2 activity, and are significantly dissimilar to known inhibitors. The assessment is
done by a computational chemist†. The assessment uses structural features and functional
groups identified for the JAK2 site in the literature [KBBR21, DS13, DYCFY14].

†Dr. Arijit Roy, TCS Innovation Labs, Hyderabad.

140

Chapter 7

Conclusions and Future Work

Let us return again to the “Domain-Knowledge Grand Challenge” [STN+20], first intro-

duced in Chapter 1 as follows:

“ML and AI are generally domain-agnostic. . . Off-the-shelf practice treats

[each of these] datasets in the same way and ignores domain knowledge that

extends far beyond the raw data itself—such as physical laws, available for-

ward simulations, and established invariances and symmetries—that is readily

available. . . Improving our ability to systematically incorporate diverse forms

of domain knowledge can impact every aspect of AI . . . ”

This dissertation has been about addressing the challenge of inclusion of complex sym-

bolic domain-knowledge into some kinds of deep neural networks to analyse relational

data. The domain-knowledge in all cases “extends the data” used by the deep neural

networks, either by non-uniform sampling of relational features; or by inclusion of rela-

tional information in a simplified form; or by inclusion of all the relational information

through the use of techniques developed in Inductive Logic Programming (ILP). In all

cases, we find empirical evidence supporting the principal conjecture investigated in the

dissertation, namely:

• Inclusion of domain-knowledge can significantly improve the performance of a deep

neural network.

Here we reiterate the main contributions and findings, and then sketch a broad outline

of future research directions.

7.1 Summary of the Dissertation

7.1.1 The Main Contributions

The principal contributions made in this dissertation are as follows:

141

Concepts. Hide-and-seek sampling for relational features; a simplified technique for

treating domain-relations as hyperedges for inclusion in graph-based neural net-

works (GNNs); a general technique for the inclusion of relational domain-knowledge

into GNNs through the use of mode-directed inverse entailment;

Implementations. Techniques that combine neural networks and symbolic represen-

tations resulting in Deep Relational Machines (DRMs), Vertex-Enriched Graph

Neural Networks (VEGNNs), Bottom-Graph Neural Networks (BotGNNs); and a

modular end-to-end neuro-symbolic system for generation of novel molecules for

drug-design; and

Applications. Large-scale empirical testing, using nearly 75 datasets in the broad area

of drug discovery and with domain-knowledge containing nearly 100 relations and

over 200,000 relational data instances; and large-scale generation of molecules out-

side the space of compounds in known chemical databases.

7.1.2 The Main Findings

Some of the findings obtained during the course of these contributions are as follows:

DRMs. DRMs equipped with hide-and-seek sampling of relational features are simple,

yet powerful. The predictive performance of a DRM increases with increase in num-

ber of relational features. However, constructing a reasonably powerful predictive

model with DRM can be computationally expensive, often requiring a large number

of logically expressive relational features.

VEGNNs. VEGNNs learn effectively using domain-relations represented as hyperedges.

However, the vertex-enrichment technique results in loss of domain information,

that is, enriched vertex labels do not convey information such as a vertex is a

member of two different hyperedges of the same type. Therefore, this technique

results simplified inclusion of domain-knowledge into GNNs.

BotGNNs. BotGNN is a general technique for complete inclusion of relational informa-

tion into GNNs. BotGNNs are better than BCP-based MLPs. DRMs with hide-

and-seek sampling can perform better than BotGNNs, but only with significant

computational effort (several 1000s of input features, which can require sampling

and evaluating many more features). BotGNNs are better than VEGNNs in terms

of predictive performance and the amount of domain-information they can include

into a GNN. BotGNNs appear to be at least as good as optimised ILP and probably

better if no parameter optimisation is performed for the ILP engine (as is often the

case in practice).

142

Novel Molecule Generation. A molecule generation system that has two deep gener-

ative models and a BotGNN acting as discriminator is found to benefit from the

inclusion of symbolic domain-knowledge. The system is able to generate a diverse

set of molecules, with novel scaffolds that can act as inhibitors for a well-studied

target protein.

7.2 Challenges and Future Work

It is possible to consider representing domain-knowledge not as logical or numeric con-

straints, but through statements in natural language. Recent rapid progress in the area of

language models, for example, the models based on attention [VSP+17, BMR+20] raises

the possibility of incorporating domain-knowledge through conversations. While precision

of these formal representations may continue to be needed for the purpose of construc-

tion of deep models with domain-knowledge, the flexibility of natural language may be

especially useful in communicating commonsense knowledge to day-to-day machine as-

sistants that need an informal knowledge of the world [TVdM18, ZKK+21]. Progress in

this is being made (see, for example, https://allenai.org/aristo), but there is much

more that needs to be done to make the language models required accessible to everyday

machinery.

In this dissertation, we have not been concerned with how the domain-knowledge to

be acquired from domain experts. Instead, our focus has been on the methods of their

inclusion into DNNs. The work has further been restricted to inclusion by changing the

input data. As we described in Chapter 2, domain-knowledge can also be about the loss

function, the structure or parameters of the deep neural network. How any of these forms

of domain-knowledge are to be acquired remains an important question to be addressed.

As this dissertation is being written, the field of deep neural networks is proceeding

at a rapid pace. We have developed principled ways in which domain-knowledge can be

included in just two kinds of neural networks, albeit with wide applicability (MLPs and

GNNs). Do these same techniques apply to other kinds of DNNs and will the results be

similarly positive? This remains to be studied.

The empirical results in the dissertation are all from molecular datasets, which we have

used as classic representatives of relational data. However there are clearly many other

problems where data are much more diverse in their relational structure; and where the

tasks may not be “object-centred”, but may involve relations between multiple relational

objects (link-prediction tasks are an example). BotGNNs are not restricted to object-

centred relations, since the graph it constructs is a representation of relations that hold

between any number of objects. The power of BotGNNs as a deep neural-symbolic

network has thus not been fully explored by the experimental work here.

Finally, we note that this dissertation has been focussed entirely on using domain-

143

https://allenai.org/aristo

knowledge to improve the predictive performance of a deep neural network. Developing

a mapping of internal representations of the deep-network’s model to concepts provided

as domain-concepts will be necessary for acceptable explanations for the model’s pre-

dictions. One route for developing trust in the model comes through understanding of

how decisions are made by the model, and what are the determining factors in these

decisions. An important requirement of machine-models in workflows with humans-in-

the-loop is that the models are human-understandable. Domain-knowledge can be used

in two different ways to assist this. First, it can constrain the kinds of models that are

deemed understandable. Secondly, it can provide concepts that are meaningful for use

in a model. The role of domain-knowledge in constructing explanations for deep neural

network models has not been addressed in this dissertation. However, the development

of explanatory deep neural network models that identify true causal connections based

on concepts provided as domain-knowledge remains an open question.

7.3 Closing Remarks

The overarching position in this dissertation is “Domain-Knowledge Matters”. This po-

sition apparently runs against a school of machine-learning that takes the view that all

necessary concepts can be discovered automatically from low-level data. However, this

is not a true reflection of our position. It is indeed important for a machine-learning

approach to be able to discover new concepts, especially if it is used as a part of an au-

tonomous agent. However, for the use of machine-learning systems as tools for decision-

support, our position is that it is inefficient, and altogether unfair, not to provide a

machine-learning system all the information that may be relevant to the construction of

good models. In this dissertation we have sought to develop concepts and implementa-

tions that allow us to explore this position more fully by combining the expressiveness of

logical forms domain-knowledge with the predictive power of deep neural networks. We

hope the results obtained provide encouragement to the development of neural-symbolic

machine-learning for prediction and explanation.

144

Appendix A

Background

This appendix presents some background for the research presented in this dissertation.

We first elaborate on the conceptual details of some standard deep neural network archi-

tectures that are extensively used in our research. Then, we provide some brief conceptual

details on Inductive Logic Programming (ILP).

A.1 Deep Neural Networks

Deep neural networks (or DNNs) are artificial neural networks that consists of multiple

layers between an input layer (that takes features describing a data-instance as input)

and an output (that computes the prediction given the input). A DNN is defined by a

structure and a set of parameters. The structure of a DNN refers to the organisation of

various layers in the DNN and the interconnections among various layers. Each connection

in a DNN associates a connection strength (a real-value) called the synaptic weight or

weight. There are also weights of a different kind called biases. The set of all the

weights and biases is called the parameters of a DNN. DNNs can model complex non-

linear relationships in the data by expressing a data-instance as a layered composition of

primitive features [STE13]. The hidden layers in a DNN are responsible for constructing

a transformed representation for the data-instance suitable for the given problem.

Figure A.1 shows a diagrammatic representation of the brief process of learning a

DNN model given data. A learner L takes as input the data D, a DNN model structure

π relevant for learning D, the parameters θ of the model corresponding to the structure π,

an adequate loss function L for the problem, and constructs a DNN model M . Learning

refers to finding a suitable set of parameters θ for the DNN such that the model correctly

represents the data D. This involves a procedure that iteratively updates the parameters

in θ given the data D by minimising the loss function L.

Data D consists of pairs of data-instances and their target outputs. That is, D

consits of (x, y) pairs, where x represents a data-instance and y represents a category

145

Figure A.1: Construction of a DNN model from data (Based on Figure 2.2; reproduced
here for readability and completeness).

(for classification problems) or a real-value (for regression problems). x can be: a vector

or tensor of properties describing a data instance, an image, a graph, or a sentence. For

the applications studied in this dissertation, y is usually a class-label, although this is

not necessary. Depending on what x is, there are different kinds of DNNs. For examples,

if x is a vector (or in general, a tensor) there are multilayer perceptrons (MLPs), if x is

an image there are convolutional neural networks (CNNs), if x is graph, there are graph

neural networks (GNNs), etc.

Before describing what x is in this dissertation, we first summarise standard deep

neural network architectures that are used in our research. We use two kinds of deep

neural networks: (1) deep fully-connected feed-forward neural network, called Multilayer

Perceptrons or MLPs, and (2) graph neural networks or GNNs.

Multilayer Perceptrons (MLPs)

MLPs are a class of deep neural network architectures consisting of multiple layers of

neurons, each fully connected to those in the preceding layer (from which they receive

input) and to those in the succeeding layer (which they, in turn, influence). The layer

of neurons corresponding directly with the input features is called the input layer (or

simply, “inputs”) and the layer corresponding to the output(s) is called the output layer.

The layers of neurons in between the inputs and the output layer are called hidden layers.

A simple box diagram of a L-layered MLP structure is shown in Fig. A.2.

We now discuss some fundamental computations involved in an MLP. We start with

a set of notations: Let x ∈ Rd denote a data instance with d-features x1, . . . , xd. This

forms the input to an MLP. Let m(ℓ) denote the size (number of neurons) of any layer

ℓ. Clearly, m0 = d. Let z(ℓ) ∈ Rm(ℓ)
denote the inputs and σ(ℓ) be the activation for

the hidden layer ℓ. Then, h(ℓ) ∈ Rm(ℓ)
. The parameters of any layer ℓ is denoted by

W(ℓ) ∈ Rm(ℓ−1)×m(ℓ)
. Let the bias parameters at layer ℓ be denoted by b ∈ Rm(ℓ)

. The

forward propagation in MLP consists of the following computations:

146

Figure A.2: Representing MLP with layers as boxes. No importance to be given to the
width of the boxes. The depth of the MLP is L. h denotes a vector of hidden layer
activations (also called hidden representation) and ŷ denotes the outputs. Superscript
(ℓ) represents the layer index. The arrows show propagation of information (activations)
from one layer to another. W(ℓ) denotes the parameters (a matrix of synaptic weights)
at layer ℓ.

For layer ℓ = 0, . . . , L− 1:

z(ℓ) = h(ℓ−1)W(ℓ) + b(ℓ) (A.1)

h(ℓ) = σ(ℓ)(z(ℓ)) (A.2)

Clearly, h(0) = x. For the output layer, the computations are then:

z(L) = h(L−1)W(L) + b(L) (A.3)

ŷ = σ(L)(z(L)) (A.4)

In the above computations, the activation function σ(ℓ) is applied element-wise. It decides

the degree of activation of a neuron based on the net input it receives. Below, we provide

some common activation functions:

1. Linear activation: It results in an affine transformation of the input.

σ(z) = αz (A.5)

where α ∈ R is some constant.

2. Sigmoid or logistic activation: It squashes the input to a value in the range [0, 1].

σ(z) =
1

1 + e−z
(A.6)

147

3. Hyperbolic tangent (tanh) activation: It squashes the input to a value in the range

[−1, 1].

σ(z) =
ez − e−z

ez + e−z
(A.7)

4. Rectified Linear Unit (ReLU) activation: A simple and popular non-linear function

for deep networks.

σ(z) = max(0, z) (A.8)

5. Variants of ReLU:

(a) Leaky ReLU:

σ(z) = max(0.01z, z) (A.9)

(b) Parametric ReLU:

σ(z) = max(αz, z) (A.10)

where α ∈ R is a learnable parameter.

Learning of an MLP refers to the update of the model parameters Ws given some

labelled data in the form of (x, y) pairs. This process is referred to as “training”. Train-

ing in a deep neural network is usually done using the popular backpropagation proce-

dure [RHW86]. Backpropagation updates the parameters (synaptic weights and some-

times, other hyperparameters) using the chain-rule of derivative calculus for propagating

the gradients of the loss from output layer towards the inputs.

Graph Neural Networks (GNNs)

MLPs described above can learn from data-instances that are described using numeric

feature-vectors and cannot be adopted directly for graph-structured data where each

data-instance is a graph. MLPs would require that the graph instances to be converted

to fixed-length numeric vectors which can then be used as inputs. There is a class of

DNNs that are suitable for learning directly from graph-structured data, called graph

neural networks (GNNs). GNNs, however, do involve a structure similar to MLPs within

their structure. We will discuss some implementational aspects of GNNs here. For a

more complete technical overview, the reader is referred to [Ham20].

In Chapter 4, we discussed that GNNs, in their implementations, involve 3 proce-

dures: (a) AGGREGATE: For every vertex, this procedure aggregates the information

from neighboring vertices; and (b) COMBINE: This procedure updates the label of the

vertex by combining its present label with its neighbors’; and (c) READOUT: This proce-

dure constructs a vectorised representation of the entire graph. In mathematical forms,

these procedures are described as follows:

148

For a graph G, at some iteration k, the labelling of a vertex v (denoted by hv) is

updated as

a(k)v = AGGREGATE(k)
({
h(k−1)
u : u ∈ N (v)

})
,

h(k)v = COMBINE(k)
(
h(k−1)
v , a(k)v

)
where, N (v) denotes the set of vertices adjacent to v. Initially (at k = 0), h

(0)
v = Xv.

The vector representation of the entire graph G is obtained in the final iteration

(k = K) as

hG = READOUT
({
h(K)
v | v ∈ G

})
In practice, AGGREGATE and COMBINE procedures are implemented using graph

convolution and pooling operations. The READOUT procedure is usually implemented

using a global or hierarchical pooling operation [XHLJ19]. Variants of GNNs result from

modifications to these 3 procedures: AGGREGATE, COMBINE and READOUT.

Implementation of AGGREGATE-COMBINE

There are several variants of GNNs of which some GNN variants are quite popular due

to their successes in many different real-world problems. We provide some brief notes

on their implementation, primarily, focusing on how the graph convolution operation is

implemented in them. We focus mainly on the following variants of graph convolutions

that are used in the research conducted in this dissertation: (1) GCN: spectral graph con-

volution [KW17], (2) k-GNN: multistage graph convolution [MRF+19], (3) GAT: graph

convolution with attention [VCC+18], (4) GraphSAGE: simple-and-aggregate graph con-

volution [HYL17], and (5) ARMA: graph convolution with auto-regressive moving aver-

age [BGLA21].

Variant 1: GCN

Based on the spectral-based graph convolution as proposed by [KW17], this graph con-

volution uses a layer-wise (or iteration-wise) propagation rule for a graph with N vertices

as:

H(k) = σ
(
D̃− 1

2 ÃD̃− 1
2H(k−1)Θ(k−1)

)
(A.11)

where, H(k) ∈ RN×D denotes the matrix of vertex representations of length D, Ã = A+ I

is the adjacency matrix representing an undirected graph G with added self-connections,

A ∈ RN×N is the graph adjacency matrix, IN is the identity matrix, D̃ii =
∑

j Ãij, and

Θ(k−1) is the iteration-specific trainable parameter matrix, σ(·) denotes the activation

function e.g. ReLU(·) = max(0, ·), H(0) = X, X is the matrix of feature-vectors of the

vertices, where each vertex i is associated with a feature-vector Xi.

149

Variant 2: k-GNN

This graph convolution passes messages (vertex feature-vectors) directly between sub-

graph structures inside a graph [MRF+19]. At iteration k, the feature representation of

a vertex is computed by using

h(k)u = σ

h(k−1)
u ·Θ(k)

1 +
∑

v∈N (u)

h(k−1)
v ·Θ(k)

2

 (A.12)

where, hku denotes the vertex-representation of a vertex u at iteration k, N denotes the

neighborhood function, σ is a non-linear transfer function applied component wise to the

function argument, Θs are the layer-specific learnable parameters of the network.

Variant 3: GAT

This variant is based on aggregating information from neighbours with attention. This

approach is popularly known as Graph Attention Network (GAT: [VCC+18]). This net-

work assumes that the contributions of neighboring vertices to the central vertex are

not pre-determined which is the case in the Graph Convolutional Network [KW17]. This

adopts attention mechanisms to learn the relative weights between two connected vertices.

The graph convolutional operation at iteration k is thereby defined as:

h(k)u = σ

 ∑
v∈N (u)∪u

α(k)
uv Θ(k)h(k−1)

u

 (A.13)

where, hku denotes the vertex-representation of a vertex u at iteration k; h
(0)
u = Xu (the

initial feature-vector associated with a vertex u). The connective strength between the

vertex u and its neighbor vertex v is called attention weight, which is defined as

α(k)
uv = softmax

(
LeakyReLU

(
aT
[
Θ(k)h(k−1)

u ∥Θ(k)h(k−1)
v

]))
(A.14)

where, a is the set of learnable parameters of a single layer feed-forward neural network,

|| denotes the concatenation operation.

Variant 4: GraphSAGE

This graph convolution is based on inductive representation learning on large graphs, as

proposed in [HYL17]. The convolution technique here is used to generate low-dimensional

vector representations for vertices by learning how to aggregate feature information from

the neighbourhood of the vertices. It adopts two steps: First, it samples a neighbour-

hood vertices of a vertex; Second, aggregate the feature-information from these sampled

150

vertices. GraphSAGE is used to found to be very useful for graphs with vertices as-

sociated with rich feature-vectors. The following is an iterative update of the vertex

representations in a graph:

h(k)u = σ

h(k−1)
u ·Θ(k)

1 +
1

|N (u)|
∑

v∈N (u)

h(k−1)
v ·Θ(k)

2

 (A.15)

where, hku denotes the vertex-representation of a vertex u at iteration k, σ is a non-

linear transfer function applied component wise to the function argument, N denotes the

neighborhood function, Θs are the layer-specific learnable parameters of the network.

Variant 5: ARMA

This graph convolution is inspired by the auto-regressive moving average (ARMA) filters

that are considered to be more robust than polynomial filters [BGLA21]. The ARMA

graph convolutional operation is defined as:

H(k) =
1

M

M∑
m=1

H(K)
m (A.16)

where, Hk denotes the vertex-representation matrix at iteration k, M is the number of

parallel stacks, K is the number of layers; and H
(K)
m is recursively defined as

H(k+1)
m = σ

(
L̂H(k)

m Θ
(k)
2 + H(0)Θ

(k)
2

)
(A.17)

where, σ is a non-linear transfer function, L̂ = I − L is the modified Laplacian. The Θ

parameters are learnable parameters.

Graph Pooling

In addition to the graph convolution methods mentioned above, graph pooling is a method

that applies down-sampling to graphs. This operation allows to obtain refined graph

representations at each layer. Like in convolutional neural networks, a (graph-)pooling

operation follows a (graph-)convolution operation. The primary aim of including a graph

pooling operation after each graph convolution is that this operation can reduce the graph

representation while ideally preserving important structural information.

In the research conducted in this dissertation, we use a popular structural-attention

based graph pooling method [LLK19]. This method uses the graph convolution defined

in Equation (A.11) to obtain a self-attention score as given in Equation (A.18) with the

trainable parameter replaced by Θatt ∈ RN×1, which is a set of trainable parameters in

151

the pooling layer.

Z = σ
(
D̃− 1

2 ÃD̃− 1
2XΘatt

)
(A.18)

Here, σ(·) is the activation function e.g. tanh.

Implementation of READOUT

The graph-convolution and graph-pooling operations described in the preceding subsec-

tion allows an iterative construction of vertex-representations. To deal with the problem

of graph classification (as is the case in this dissertation), we need to represent an input

graph as a “flattened” fixed-length feature-vector that can then be used with a standard

fully-connected multilayer neural network (e.g. Multilayer Perceptron) to produce a class-

label. To construct this graph-representation (mostly, a dense real-valued feature-vector,

also called a graph-embedding), we use hierarchical graph-pooling method proposed by

[CVJ+18].

The hierarchical pooling method is implemented with two operations: (a) global av-

erage pooling, that averages all the learnt vertex representations in the final (readout)

layer; (b) augmenting the representation obtained in (a) with the representation obtained

using global max pooling, that seek to obtained the most relevant information and could

strengthen the graph-representation. The term “hierarchical” refers to the fact that the

above two operations (a) and (b) are carried out after each “convolution-pooling” oper-

ation in the GNN. The final graph representation is an aggregate of all the layer-wise

representations by taking their sum. The output graph after each convolution-pooling

block can be represented by a concatenation of the global average pool representation

and the global max pool representation as

H
(k)
G = avg(H(k)) ||max(H(k)) (A.19)

where, Hk
G denotes the graph-representation at iteration k; H(k) denotes the matrix of

vertex-representations after convolution-pool operations at iteration k as mathematically

described in the preceding subsection; avg and max denote the average and max opera-

tions, which are computed as follows:

avg(H(k)) =
1

N

N∑
i=1

H
(k)
i (A.20)

max(H(k)) =
N

max
i=1

H
(k)
i (A.21)

Here, Hk
i denotes the representation for the ith vertex of the graph; N is the number of

nodes in the graph.

The final fixed-length representation after iteration K for the whole input graph is

152

then computed by the element-wise sum, denoted as ⊕, of these intermediate graph-

representations in Equation (A.19):

H
(K)
G = ⊕K

k=1H
(k)
G (A.22)

A.2 Inductive Logic Programming (ILP)

Here we provide some conceptual details on ILP. By no means, this section is intended

to provide a complete technical overview of ILP; for which the reader could refer to

[Mug91, Md94].

ILP is a symbolic machine learning method that construct models from data and

background knowledge. It is a formal framework for symbolic machine learning and pro-

vides practical algorithms for inductively learning relational descriptions for data (in the

form of programs in first-order logic) from training examples and background knowl-

edge, both uniformly represented in relational form (first-order logic). We describe the

learning problem in ILP with an illustration of the classic east-west train classification

problem, proposed by Michalski [Mic80, MMPS94], which we have discussed extensively

in Chapter 3.

Example A.1. Michalski’s east-west train classification problem has the following set-

ting:

• Consider there are 10 trains, 5 going east and 5 going west as re-shown in the figure

below. Each train can consist of more than one cars.

Figure A.3: Michalski’s trains problem; adapted from [Mic80, MMPS94].

• In a relational representation these trains are represented as facts:

Positive examples, E+: eastbound(east1), . . ., eastbound(east5);

Negative examples, E−: eastbound(west6), . . ., eastbound(west10).

153

• Each train comprises a set of locomotive pulling wagons; whether a particular train

is travelling towards the east or towards the west is determined by some properties

of that train.

• The learning task here is to determine what governs which kinds of trains are East-

bound and which kinds are Westbound.

• The following background knowledge about each wagon (or car) in the train are

available: which train it is part of, its shape, how many wheels it has, whether it is

open (i.e. has no roof) or closed, whether it is long or short, the shape of the things

the car is loaded with. In addition, for each pair of connected wagons, knowledge of

which one is in front of the other can be extracted.

• Let us assume the following background knowledge for the cars in train east1:

short(car12), short(car14), long(car11), long(car13),

closed(car12), open(car11), open(car13), open(car14),

in front(car11, car12), in front(car12, car13), in front(car13, car14),

shape(car11, rectangle), shape(car12, rectangle),

shape(car13, rectangle), shape(car14, rectangle),

load(car11, rectangle, 3), load(car12, triangle, 1),

load(car13, hexagon, 1), load(car14, circle, 1),

wheels(car11, 2), wheels(car12, 2), wheels(car13, 3), wheels(car14, 2),

has car(east1, car11), has car(east1, car12),

has car(east1, car13), has car(east1, car14).

Here cars are uniquely identified by constants of the form carxy, where x is number

of the train to which the car belongs and y is the position of the car in that train.

For example, car14 refers to the fourth car behind the locomotive in the first train.

• Then an ILP system could generate the following hypothesis:

eastbound(X)← has car(X, Y), short(Y), closed(Y)

meaning, a train is eastbound if it has a car which is both short and closed.

The hypothesis about an eastbound train is simply a relational description. The core

technique developed within ILP to constrain the search for such relational descriptions for

data is mode-directed inverse entailment (MDIE), which was introduced by Muggleton

in [Mug95]. More detailed description is provided in Chapter 5. For completeness, we

briefly describe MDIE and the related concepts below.

154

Mode-Directed Inverse Entailment (MDIE)

Mode-directed Inverse Entailment (MDIE [Mug95]) is a technique for constraining the

search for explanations for data in Inductive Logic Programming (ILP). Given a relational

data instance e, background knowledge B, a set of modes M, a depth-limit d, and language

restriction L, MDIE identifies a most-specific logical formula ⊥B,M,d(e) that contains all

the relational information in B that is related to e.

In MDIE, Background knowledge B is given as a logic theory in the form of Horn

clauses; data instances are provided as a set of positive and negative examples, E =

E+ ∧ E−. Based on MDIE, a correct hypothesis H is a conjunction of definite clauses

H = D1 ∧D2 ∧ . . . which satisfies the following logical requirements:

• Prior necessity (B ̸|= E+): It forbids any generation of a hypothesis as long as

the positive examples are explainable without it. More clearly, this requirement

checks that at least one positive example cannot be explained by the background

knowledge B alone.

• Posterior Sufficienty (B ∧ H |= E+): It requires any generated hypothesis h to

explain all positive examples E+.

• Prior satisfybility (B∧H ̸|= 2): This is a weak consistency requirement that forbids

generation of any hypothesis h that contradicts the background knowledge B.

• Posterior satisfybility (B ∧H ∧E− ̸|= 2): This is a strong consistency requirement

that forbids generation of any hypothesis that contradicts the negative examples (if

given).

Here |= denotes logical consequence and 2 denotes a contradiction. MDIE implemen-

tations attempt to find the most-probable H, given B and the data E+, E−. The key

concept used in [Mug95] is to constrain the identification of the Dj using a most-specific

clause. Let us look at the following example (re-used here from Chapter 5):

Example A.2. In the following, capitalised letters like X, Y denote variables. Let

B:

parent(X, Y)← father(X, Y)

parent(X, Y)← mother(X, Y)

mother(jane, alice)←

e:

gparent(henry, john) ←
father(henry, jane),

mother(jane, john)

The most-specific clause for the example gparent(henry, john), denoted by ⊥B,M,d(e) is:

gparent(henry, john)←
father(henry, jane), mother(jane, john), mother(jane, alice),

parent(henry, jane), parent(jane, john), parent(jane, alice)

155

Language Restrictions

In this section we intuitively describe what “mode” means in ILP. Given a set of examples

and background knowledge, the space of possible hypotheses in ILP tends to be very

large [Mug91, Rae10]. To reduce the search space is to be more specific about how the

predicates in the hypothesis (Horn) clauses will look like. There are two possible ways this

can be achieved: (1) by limiting the number of existentially quantified variables allowed

in the learned clauses; and (2) by explicitly specifying what the learned hypothesis will

look like, in terms of restrictions on both their head and their body. In particular, for each

predicate in the body of a hypothesis clause, it is possible to specify whether an argument

in the predicate is to be a ground term, a new variable or a variable given in the head.

This is done in some popular ILP systems such as Aleph [Sri01]. This is called a language

restriction in ILP and it drastically reduces the search time by confining the search to be

carried out in a limited search space. In implementations, this is carried out by providing

a set of mode declarations [Mug95]. There are two kinds of mode declarations:

modeh declaration This is a mode declaration that dictates what the head of the

hypothesis clauses will look like.

modeb declaration This is a mode declaration that stipulates the format of the pred-

icates in the body of the clauses.

Let us look the following examples:

Example A.3. For our grandparent example above, the following are some mode decla-

rations:

modeh(gparent(+person,−person))

modeb(father(+person,−person))

modeb(mother(+person,−person))

modeb(parent(+person,−person))

The first mode declaration, modeh is for the head of a hypothesis clause that stipulates

that the head literal will have a predicate name gparent and that the first argument will

take in a given person name (specified by ‘+’, called input) and second argument will

return a person name (specified by ‘-’, called output). This means that the learned pred-

icate will take in the name of a person and return its grand parent, as required. Similar

description applies to the body literals of the clause, where there can be three kinds of body

literals; father, mother, parent.

Example A.4. There can be mode declaration with argument in the predicate being spec-

ified with ‘#’. Let us consider the following two mode declarations:

156

modeh(class(+flower,#category))

modeb(colour(+flower,#colourname))

The modeh declaration here stipulates that the predicate name class will take a given

flower (specified by ‘+’) and the second argument will return a ground instance (specified

by ‘#’) of the type category. Similar description applies to the modeb declaration.

In addition to the mode declarations, the language restriction requires few more pa-

rameters such as the ‘depth-limit’, denoted by d, and the number of literals in the body

of a clause. Informally, depth refers to the depth of a term (arguments) in the literals

(predicates) appearing the body of a hypothesis clause. More details on this parameter is

provided in Chapter 5. The language restriction is often referred to as the ‘depth-limited

mode language’ in ILP.

Some ILP Learning Systems

There are several implementations of ILP learning systems. Probably one of the oldest is

FOIL [Qui90], and the newest is Popper [CM21]. There are close to 20 implementations

of ILP learning systems (as per [CD20, CDEM22]) in the last 3 decades that are based

on considerably different techniques. It is difficult to provide details on these learning

systems in this dissertation, and therefore, we direct the reader to some relevant discus-

sions on some of these systems in the following survey: [CD20]. In this section, we briefly

focus first on Progol [Mug95], an ILP system that is based on MDIE as discussed earlier.

Progol is a precursors to one of the most popular ILP system, Aleph [Sri01]. In general,

the technique of MDIE and the Aleph system are extensively used in this dissertation.

Progol

Progol is one of the most important ILP systems that has inspired development of many

other ILP systems, including Aleph [Sri01]. Progol combines the technique of MDIE with

general-to-specific search through a refinement graph representing the discrete hypothesis

space. The space is bounded by an empty clause (at the top of the refinement graph)

and a most-specific clause (at the bottom of the refinement graph) that entails a positive

example, given a set of mode-declarations and background knowledge. A simple diagram-

matic representation of the bounded search space in Progol is shown in Figure A.4. The

search of an optimal hypothesis is performed by A∗-search, over clauses which subsume

the most-specific clause in the refinement graph.

For more details on Progol, the reader is directed to: [Mug95] and [Mug96]. A more

concise description is available at [Rob97]. Next we describe a successor of Progol, called

Aleph, in more detail.

157

Figure A.4: Bounded search space in Progol.

Aleph

Aleph [Sri01] is based on the method of inverse entailment [Mug95] and uses a bottom-up

learning mechanism where it restricts the hypothesis space by constructing a bottom-

clause from the data and background-knowledge. Despite being at least 30 years old

since its inception, Aleph remains to be the one of the most popularly used ILP system

in relational learning research. The primary reason of its popularity could be its ease-of-

use nature and the software is accompanied by a detailed user-manual [Sri01]. Aleph is

written in Prolog, and its implementation is influenced by Progol [Mug95]. The learning

in Aleph is based on the learning from entailment.

To construct a hypothesis, Aleph starts with an empty hypothesis and employs the

following steps:

(1) Select a positive example to generalise. If none exists, stop and return the current

hypothesis; otherwise proceed to the next step.

(2) Construct the most specific clause (the depth-limited bottom-clause) that is con-

sistent with the mode declaration and entails the example.

(3) Search for a clause more general than the bottom-clause and has the best score.

(4) Add the clause to the hypothesis and remove all the positive examples covered by

it. Return to Step 1.

Next we elaborate on the approaches to steps 2 and 3 below.

Step 2 The purpose of constructing a bottom-clause for an example is to bound the

search in Step. (3) above. In general, a bottom-clause could be of infinite length

(infinite cardinality). Aleph uses a depth-limited mode language to restrict them.

During the search space, Aleph only considers the clauses that are generalisations

of the bottom-clause, all of which entail the example.

158

Step 3 Aleph starts the search from the most general hypothesis and specialises it (by

adding literals from the bottom clause) until it finds the best hypothesis. This

results in a discrete space of clauses forming a search lattice. Figure A.5 shows the

hypothesis space for the grandparent example. Aleph evaluates each clause in the

lattice and assigns a score based on how well the training set is described by the

clause. The default evaluation measure is the coverage as P − N , where P and

N are the numbers of positive and negative examples, respectively, entailed by the

clause. The users could also provide other predefined measures for search. Aleph

tries to specialise a clause by adding literals to the body of the clause, which it

selects from the bottom-clause or by instantiating variables. Each specialisation

of a clause is called refinement. If Aleph finds the best clause that satisfies some

specified constraint on the evaluation score, it adds it to the hypothesis, and remove

all the positive examples covered by the new hypothesis, and returns to Step (1).

Figure A.5: A fragment of the hypothesis space in Aleph for the grandparent example,
bounded by the most general hypothesis (at the top) and the most specific hypothesis
(at the bottom).

Aleph offers several functionalities such as: constraint learning, mode learning, abduc-

tive learning, feature construction. In Chapter 3, the feature construction functionality

of Aleph is extensively used. More details on Aleph can be found in [Sri01].

159

160

Appendix B

Additional Experimental Details

B.1 Details relevant to Chapter 3

Bottom-Clause Propositionalisation (BCP [FZG14]) constructs propositions using the

most-specific clauses returned by the ILP system Aleph given the background-knowledge

B, modes M and depth-limit d. In BCP, each data instance is represented using a Boolean

vector of 0’s and 1’s, depending on the value of propositions (constructed manually or au-

tomatically) for the data instance (the value of the ith dimension is 0 if the ith proposition

is false for the data-instance and 1 otherwise). The propositions represent the relational

features constructed from the literals of a bottom-clause in ILP. For the construction of

these Boolean features using BCP, we use the code available at [Jan20]. The resulting

dataset is used to construct an MLP model. Our construction of MLP using BCP features

is based on the following setup:

• The MLP is implemented using Tensorflow-Keras [C+15].

• The number of layers in MLP is tuned using a validation-based approach. The

parameter grid for number of hidden layers is: {1, 2, 3, 4}.

• Each layer has fixed number of neurons: 10.

• The dropout rate is 0.5. We apply dropout [SHK+14] after every layer in the

network except the output layer.

• The activation function used in each hidden layer is relu.

• The training is carried out using the Adam optimiser [KB15] with learning rate

0.001.

• Additionally, we use early-stopping [Pre98] with a patience period of 50 to control

over-fitting during training.

161

B.2 Details relevant to Chapter 5

Mode-Declarations

We use the ILP engine, Aleph [Sri01] to construct the most-specific clause for a relational

data instance given background-knowledge, mode specifications and a depth. The mode-

language used for our main experiments in the chapter is given below:

:- modeb(*,bond(+mol,-atomid,-atomid,#atomtype,#atomtype,#bondtype)).

:- modeb(*,has_struc(+mol,-atomids,-length,#structype)).

:- modeb(*,connected(+mol,+atomids,+atomids)).

:- modeb(*,fused(+mol,+atomids,+atomids)).

The ‘#’-ed arguments in the mode declaration refers to type, that is, #atomtype refers

to the type of atom, #bondtype refers to the type of bond, and #structype refers to

the type of the structure (functional group or ring) associated with the molecule.

Experiments with ILP Benchmarks

The seven datasets are taken from [SKB03]. These datasets are some of the most popular

benchmark datasets to evaluate various techniques within ILP studies. For the construc-

tion of BotGNNs, the following details are relevant:

• There is background knowledge available for each dataset.

• There are 10 splits for each dataset. Therefore, for each test-split we construct

BotGNNs (all 5 variants), using 8 of rest splits as training set and the remaining 1

split as a validation set.

• Since these datasets are small (few hundreds of data instances), we could manage

to perform some hyperparameter tuning for construction of our BotGNNs. The pa-

rameter grids for this are: m : {8, 16, 32, 64, 128}, batch-size: {16, 32}, and learning

rate: {0.0001, 0.0005, 0.001}.

• Other details are same as described in the main BotGNN experiments.

• We report the test accuracy from the best performing BotGNN variant.

B.3 Details relevant to Chapter 6

A proxy for the results of hit confirmation assays is constructed using the assay results

available for the target. This allows us to approximate the results of such assays on

molecules for which experimental activity is not available. Of course, such a model is only

162

possible within the controlled experimental design we have adopted, in which information

on target inhibition is deliberately not used when constructing the discriminator in D and

generator in G2. In practice, if such target-inhibition information is not available, then

a proxy model would have to be constructed by other means (for example, using the

activity of inhibitors of homologues).

We use the state-of-the-art chemical activity prediction package Chemprop.1 We train

a Chemprop model using the data consisting of JAK2 inhibitors and their pIC50 values.

The parameter settings used are: class-balance = TRUE, and epochs = 100 (all other

parameters were set to their default values within Chemprop). Chemprop partitions

the data into 80% for training, 10% validation and 10% for test. Chemprop allows the

construction of both classification and regression models. The performance of both kinds

of models are tabulated below:

Partition Classification Regression

(AUC) (RMSE)

Valid 0.9472 0.6515

Test 0.8972 0.6424

The classification model is more robust, since pIC50 values are on a log-scale. We use

the classification model for obtaining the results in Chapter 6 (see Figure 6.7), and we

use the prediction of pIC50 values from the regression model as a proxy for the results of

the hit-confirmation assays.

1It is likely that a BotGNN with access to the information in BD along with the Chemprop prediction
would result in a better proxy model. We do not explore this here.

163

164

Bibliography

[AA+15] Mart́ın Abadi, Ashish Agarwal, et al. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. Software available from tensor-

flow.org.

[ADL+06] Howard Y Ando, Luc Dehaspe, Walter Luyten, Elke Van Craenenbroeck,

Henk Vandecasteele, and Luc Van Meervelt. Discovering h-bonding rules

in crystals with inductive logic programming. Molecular pharmaceutics,

3(6):665–674, 2006.

[ADRDS+20] Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez, Javier Del Ser, Adrien

Bennetot, Siham Tabik, Alberto Barbado, Salvador Garćıa, Sergio Gil-

López, Daniel Molina, Richard Benjamins, et al. Explainable artificial

intelligence (xai): Concepts, taxonomies, opportunities and challenges to-

ward responsible ai. Information Fusion, 58:82–115, 2020.

[Aiz99] Igor N Aizenberg. Neural networks based on multi-valued and universal

binary neurons: theory, application to image processing and recognition.

In International Conference on Computational Intelligence, pages 306–316.

Springer, 1999.

[ARD05] Eric E. Altendorf, Angelo C. Restificar, and Thomas G. Dietterich. Learn-

ing from sparse data by exploiting monotonicity constraints. In Proceedings

of the Twenty-First Conference on Uncertainty in Artificial Intelligence,

UAI’05, page 18–26, Arlington, Virginia, USA, 2005. AUAI Press.

[BDBC+10] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando

Pereira, and Jennifer Wortman Vaughan. A theory of learning from dif-

ferent domains. Machine learning, 79(1):151–175, 2010.

[BDR+20] Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Nan Rosemary Ke, Se-

bastien Lachapelle, Olexa Bilaniuk, Anirudh Goyal, and Christopher Pal.

A meta-transfer objective for learning to disentangle causal mechanisms.

In International Conference on Learning Representations, 2020.

165

[BGB+17] Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bow-

man, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kühnberger, Luis C Lamb,

Daniel Lowd, Priscila Machado Vieira Lima, et al. Neural-symbolic

learning and reasoning: A survey and interpretation. arXiv preprint

arXiv:1711.03902, 2017.

[BGC17] Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning, vol-

ume 1. MIT press Cambridge, MA, USA, 2017.

[BGKP21] Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. The

modern mathematics of deep learning. arXiv preprint arXiv:2105.04026,

2021.

[BGLA21] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare

Alippi. Graph neural networks with convolutional arma filters. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages 1–1,

2021.

[BHB+18] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-

Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti,

David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational in-

ductive biases, deep learning, and graph networks. arXiv preprint

arXiv:1806.01261, 2018.

[BKBR21] Navneet Bung, Sowmya Ramaswamy Krishnan, Gopalakrishnan Bulusu,

and Arijit Roy. De novo design of new chemical entities for sars-cov-2

using artificial intelligence. Future Medicinal Chemistry, 13(6):575–585,

2021.

[BLPL07] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.

Greedy layer-wise training of deep networks. In Advances in neural in-

formation processing systems, pages 153–160, 2007.

[Blu92] Avrim Blum. Learning boolean functions in an infinite attribute space.

Machine Learning, 9(4):373–386, 1992.

[BMO+21] Jannis Born, Matteo Manica, Ali Oskooei, Joris Cadow, Greta Markert,

and Maŕıa Rodŕıguez Mart́ınez. Paccmannrl: De novo generation of hit-

like anticancer molecules from transcriptomic data via reinforcement learn-

ing. Iscience, 24(4):102269, 2021.

[BMR+20] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-

plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sas-

166

try, Amanda Askell, et al. Language models are few-shot learners. arXiv

preprint arXiv:2005.14165, 2020.

[BPZ97] Igor I Baskin, Vladimir A Palyulin, and Nikolai S Zefirov. A neural de-

vice for searching direct correlations between structures and properties

of chemical compounds. Journal of chemical information and computer

sciences, 37(4):715–721, 1997.

[BVV+16] Samuel R. Bowman, L. Vilnis, Oriol Vinyals, Andrew M. Dai,

R. Józefowicz, and S. Bengio. Generating sentences from a continuous

space. In CoNLL, 2016.

[BW91] Wray L. Buntine and A. Weigend. Bayesian back-propagation. Complex

Syst., 5, 1991.

[C+15] François Chollet et al. Keras. https://keras.io, 2015.

[CD20] Andrew Cropper and Sebastijan Dumančić. Inductive logic programming

at 30: a new introduction. arXiv preprint arXiv:2008.07912, 2020.

[CDEM22] Andrew Cropper, Sebastijan Dumančić, Richard Evans, and Stephen H.

Muggleton. Inductive logic programming at 30. Machine Learning,

111(1):147–172, Jan 2022.

[CDM20] Andrew Cropper, Sebastijan Dumančić, and Stephen H. Muggleton. Turn-

ing 30: New ideas in inductive logic programming. In Christian Bessiere,

editor, Proceedings of the Twenty-Ninth International Joint Conference on

Artificial Intelligence, IJCAI-20, pages 4833–4839, 2020.

[CHBP02] Anthony Coates, Yanmin Hu, Richard Bax, and Clive Page. The future

challenges facing the development of new antimicrobial drugs. Nature

reviews Drug discovery, 1(11):895–910, 2002.

[CL14] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic logic and me-

chanical theorem proving. Academic press, 2014.

[CLZ+19] Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding, Yukuo Cen,

Hongxia Yang, and Jie Tang. Towards knowledge-based recommender

dialog system. arXiv preprint arXiv:1908.05391, 2019.

[CM21] Andrew Cropper and Rolf Morel. Learning programs by learning from

failures. Machine Learning, 110(4):801–856, 2021.

[CS82] Brian Cohen and Claude Sammut. Object recognition and concept learning

with confucius. Pattern Recognition, 15(4):309–316, 1982.

167

https://keras.io

[CVJ+18] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf,

and Pietro Liò. Towards sparse hierarchical graph classifiers. ArXiv,

abs/1811.01287, 2018.

[CWPZ18] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on net-

work embedding. IEEE Transactions on Knowledge and Data Engineering,

31(5):833–852, 2018.

[CYK+18] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco,

Rhomni St John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan,

Chris Tar, et al. Universal sentence encoder for english. In Proceedings of

the 2018 Conference on Empirical Methods in Natural Language Process-

ing: System Demonstrations, pages 169–174, 2018.

[CYM20] William Cohen, Fan Yang, and Kathryn Rivard Mazaitis. Tensorlog:

A probabilistic database implemented using deep-learning infrastructure.

Journal of Artificial Intelligence Research, 67:285–325, 2020.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language under-

standing. In NAACL-HLT (1), pages 4171–4186, 2019.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE con-

ference on computer vision and pattern recognition, pages 248–255. Ieee,

2009.

[Dec86] Rina Dechter. Learning while searching in constraint-satisfaction-

problems. In Tom Kehler, editor, Proceedings of the 5th National Con-

ference on Artificial Intelligence. Philadelphia, PA, USA, August 11-15,

1986. Volume 1: Science, pages 178–185. Morgan Kaufmann, 1986.

[dGL20] Artur d’Avila Garcez and Luis C. Lamb. Neurosymbolic ai: The 3rd wave,

2020.

[DGS17] Michelangelo Diligenti, Marco Gori, and Claudio Sacca. Semantic-based

regularization for learning and inference. Artificial Intelligence, 244:143–

165, 2017.

[DQW+21] Tianjian Dong, Qi Qi, Jingyu Wang, Alex X Liu, Haifeng Sun, Zirui

Zhuang, and Jianxin Liao. Generative adversarial network-based transfer

reinforcement learning for routing with prior knowledge. IEEE Transac-

tions on Network and Service Management, 2021.

168

[DRG17] Michelangelo Diligenti, Soumali Roychowdhury, and Marco Gori. Integrat-

ing prior knowledge into deep learning. In 2017 16th IEEE International

Conference on Machine Learning and Applications (ICMLA), pages 920–

923. IEEE, 2017.

[DRKT07] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A prob-

abilistic prolog and its application in link discovery. In IJCAI, volume 7,

pages 2462–2467. Hyderabad, 2007.

[DRR16] T. Demeester, Tim Rocktäschel, and S. Riedel. Lifted rule injection for

relation embeddings. ArXiv, abs/1606.08359, 2016.

[DS13] Brian W Dymock and Cheng Shang See. Inhibitors of jak2 and jak3: an

update on the patent literature 2010–2012. Expert opinion on therapeutic

patents, 23(4):449–501, 2013.

[DSW+20] Chunning Du, Haifeng Sun, Jingyu Wang, Qi Qi, and Jianxin Liao. Ad-

versarial and domain-aware bert for cross-domain sentiment analysis. In

Proceedings of the 58th annual meeting of the Association for Computa-

tional Linguistics, pages 4019–4028, 2020.

[DYCFY14] Brian W Dymock, Eugene Guorong Yang, Yuyi Chu-Farseeva, and Lianbin

Yao. Selective jak inhibitors. Future medicinal chemistry, 6(12):1439–1471,

2014.

[EG18] Richard Evans and Edward Grefenstette. Learning explanatory rules from

noisy data. J. Artif. Intell. Res., 61:1–64, 2018.

[EMM+18] Kevin Ellis, Lucas Morales, Mathias Sabl Meyer, Armando Solar-Lezama,

and Joshua B Tenenbaum. Dreamcoder: Bootstrapping domain-specific

languages for neurally-guided bayesian program learning. In Proceedings of

the 2nd Workshop on Neural Abstract Machines and Program Induction,

2018.

[ES09] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility

score of drug-like molecules based on molecular complexity and fragment

contributions. Journal of cheminformatics, 1(1):1–11, 2009.

[EWN+20] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer,

Luc Cary, Lucas Morales, Luke Hewitt, Armando Solar-Lezama, and

Joshua B Tenenbaum. Dreamcoder: Growing generalizable, interpretable

knowledge with wake-sleep bayesian program learning. arXiv preprint

arXiv:2006.08381, 2020.

169

[FBDC+19] M. Fischer, Mislav Balunovic, Dana Drachsler-Cohen, Timon Gehr,

Ce Zhang, and Martin T. Vechev. Dl2: Training and querying neural

networks with logic. In ICML, 2019.

[FCDRDG14] Paolo Frasconi, Fabrizio Costa, Luc De Raedt, and Kurt De Grave. kLog:

A language for logical and relational learning with kernels. Artificial In-

telligence, 217:117–143, 2014.

[FGU+21] Hossein Rajaby Faghihi, Quan Guo, Andrzej Uszok, Aliakbar Nafar, Ela-

heh Raisi, and Parisa Kordjamshidi. Domiknows: A library for inte-

gration of symbolic domain knowledge in deep learning. arXiv preprint

arXiv:2108.12370, 2021.

[FL19] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on

Graphs and Manifolds, 2019.

[FO93] Justin Fletcher and Zoran Obradovic. Combining prior symbolic knowl-

edge and constructive neural network learning. Connection Science, 5(3-

4):365–375, 1993.

[Fog08] Agner Fog. Sampling methods for wallenius’ and fisher’s noncentral hyper-

geometric distributions. Communications in Statistics—Simulation and

Computation®, 37(2):241–257, 2008.

[FSK12] Tanveer A Faruquie, Ashwin Srinivasan, and Ross D King. Topic models

with relational features for drug design. In International conference on

inductive logic programming, pages 45–57. Springer, 2012.

[Fu93] L. M. Fu. Knowledge-based connectionism for revising domain theories.

IEEE Transactions on Systems, Man, and Cybernetics, 23(1):173–182,

1993.

[Fu95] Li Min Fu. Introduction to knowledge-based neural networks. Knowledge-

Based Systems, 1995.

[FZG14] Manoel VM França, Gerson Zaverucha, and Artur S d’Avila Garcez. Fast

relational learning using bottom clause propositionalization with artificial

neural networks. Machine learning, 94(1):81–104, 2014.

[FZG15] Manoel Vitor Macedo França, Gerson Zaverucha, and ASD Garcez. Neural

relational learning through semi-propositionalization of bottom clauses. In

AAAI Spring Symposium Series, 2015.

170

[GBG12] Artur S d’Avila Garcez, Krysia B Broda, and Dov M Gabbay. Neural-

symbolic learning systems: foundations and applications. Springer Science

& Business Media, 2012.

[GC10] Kurt De Grave and Fabrizio Costa. Molecular graph augmentation with

rings and functional groups. Journal of chemical information and model-

ing, 50(9):1660–1668, 2010.

[GC21] Victor Guimarães and Vı́tor Santos Costa. Neurallog: a neural logic lan-

guage. arXiv preprint arXiv:2105.01442, 2021.

[GFS21] Manas Gaur, Keyur Faldu, and Amit Sheth. Semantics of the black-box:

Can knowledge graphs help make deep learning systems more interpretable

and explainable? IEEE Internet Computing, 25(1):51–59, 2021.

[GHN+17] Anna Gaulton, Anne Hersey, Micha l Nowotka, A Patricia Bento, Jon

Chambers, David Mendez, Prudence Mutowo, Francis Atkinson, Louisa J

Bellis, Elena Cibrián-Uhalte, et al. The chembl database in 2017. Nucleic

acids research, 45(D1):D945–D954, 2017.

[GMLS20] Francesca Grisoni, Michael Moret, Robin Lingwood, and Gisbert Schnei-

der. Bidirectional molecule generation with recurrent neural networks.

Journal of chemical information and modeling, 60(3):1175–1183, 2020.

[GMS05] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for

learning in graph domains. In Proceedings. 2005 IEEE International Joint

Conference on Neural Networks, 2005., volume 2, pages 729–734. IEEE,

2005.

[Gre21] Daria Grechishnikova. Transformer neural network for protein-specific de

novo drug generation as a machine translation problem. Scientific reports,

11(1):1–13, 2021.

[GRS+21] Manas Gaur, Kaushik Roy, Aditya Sharma, Biplav Srivastava, and Amit

Sheth. ” who can help me?”: Knowledge infused matching of support

seekers and support providers during covid-19 on reddit. arXiv preprint

arXiv:2105.06398, 2021.

[GSR+17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and

George E Dahl. Neural message passing for quantum chemistry. In Inter-

national conference on machine learning, pages 1263–1272. PMLR, 2017.

[GWW+16] Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly

embedding knowledge graphs and logical rules. In Proceedings of the 2016

171

conference on empirical methods in natural language processing, pages 192–

202, 2016.

[GZ99] Artur S Avila Garcez and Gerson Zaverucha. The connectionist inductive

learning and logic programming system. Applied Intelligence, 11(1):59–77,

1999.

[Hai10] William N. Hait. Anticancer drug development: the grand challenges.

Nature Reviews Drug Discovery, 9(4):253–254, Apr 2010.

[Háj13] Petr Hájek. Metamathematics of fuzzy logic, volume 4. Springer Science

& Business Media, 2013.

[Ham20] William L Hamilton. Graph representation learning. Synthesis Lectures

on Artifical Intelligence and Machine Learning, 14(3):1–159, 2020.

[HBC+20] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard

de Melo, Claudio Gutierrez, José Emilio Labra Gayo, Sabrina Kirrane, Se-

bastian Neumaier, Axel Polleres, et al. Knowledge graphs. arXiv preprint

arXiv:2003.02320, 2020.

[HBZ+18] William L. Hamilton, P. Bajaj, M. Zitnik, Dan Jurafsky, and J. Leskovec.

Embedding logical queries on knowledge graphs. In NeurIPS, 2018.

[HDFN95] Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal.

The” wake-sleep” algorithm for unsupervised neural networks. Science,

268(5214):1158–1161, 1995.

[Heb49] Donald Olding Hebb. The organisation of behaviour: a neuropsychological

theory. Science Editions New York, 1949.

[HH21] Hiroshi Honda and Masafumi Hagiwara. Analogical reasoning with deep

learning-based symbolic processing. IEEE Access, 9:121859–121870, 2021.

[HKBG21] Nicholas Hoernle, Rafael Michael Karampatsis, Vaishak Belle, and Kobi

Gal. Multiplexnet: Towards fully satisfied logical constraints in neural

networks. arXiv preprint arXiv:2111.01564, 2021.

[HMK07] David Heckerman, Chris Meek, and Daphne Koller. Probabilistic entity-

relationship models, prms, and plate models. Introduction to statistical

relational learning, pages 201–238, 2007.

[HML+16] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, E. Hovy, and E. Xing. Harness-

ing deep neural networks with logic rules. ArXiv, abs/1603.06318, 2016.

172

[HOT06] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning

algorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-

ral computation, 9(8):1735–1780, 1997.

[HVD15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531, 2015.

[HYL17] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation

learning on large graphs. In Advances in neural information processing

systems, pages 1024–1034, 2017.

[HZJ07] Yu-Chi Ho, Qian-Chuan Zhao, and Qing-Shan Jia. Ordinal Optimization:

Soft Optimization for Hard Problems. Springer, 2007.

[Jan20] Vince Jankovics. vakker/cilp. https://github.com/vakker/CILP, 2020.

[JRS08] Sachindra Joshi, Ganesh Ramakrishnan, and Ashwin Srinivasan. Feature

construction using theory-guided sampling and randomised search. In In-

ternational Conference on Inductive Logic Programming, pages 140–157.

Springer, 2008.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. In ICLR (Poster), 2015.

[KBBR21] Sowmya Ramaswamy Krishnan, Navneet Bung, Gopalakrishnan Bulusu,

and Arijit Roy. Accelerating de novo drug design against novel pro-

teins using deep learning. Journal of Chemical Information and Modeling,

61(2):621–630, 2021.

[KGC17] Jan Kukačka, Vladimir Golkov, and Daniel Cremers. Regularization for

deep learning: A taxonomy. arXiv preprint arXiv:1710.10686, 2017.

[KGS19] Ugur Kursuncu, Manas Gaur, and Amit Sheth. Knowledge infused learn-

ing (k-il): Towards deep incorporation of knowledge in deep learning. arXiv

preprint arXiv:1912.00512, 2019.

[Kit16] Hiroaki Kitano. Artificial intelligence to win the nobel prize and beyond:

Creating the engine for scientific discovery. AI magazine, 37(1):39–49,

2016.

[KKM+16] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and

Marion Neumann. Benchmark data sets for graph kernels, 2016. http:

//graphkernels.cs.tu-dortmund.de.

173

https://github.com/vakker/CILP
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

[KLF01] Stefan Kramer, Nada Lavrač, and Peter Flach. Propositionalization Ap-

proaches to Relational Data Mining, pages 262–291. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2001.

[KMSS96] Ross D King, Stephen H Muggleton, Ashwin Srinivasan, and MJ Stern-

berg. Structure-activity relationships derived by machine learning: The

use of atoms and their bond connectivities to predict mutagenicity by

inductive logic programming. Proceedings of the National Academy of Sci-

ences, 93(1):438–442, 1996.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-

sification with deep convolutional neural networks. Advances in neural

information processing systems, 25:1097–1105, 2012.

[KT07] Eyal Krupka and Naftali Tishby. Incorporating prior knowledge on features

into learning. In AISTATS, 2007.

[KW14] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes.

In ICLR, 2014.

[KW17] Thomas N. Kipf and Max Welling. Semi-supervised classification with

graph convolutional networks. In 5th International Conference on Learn-

ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-

ference Track Proceedings, 2017.

[KWJ+04] Ross D King, Kenneth E Whelan, Ffion M Jones, Philip GK Reiser,

Christopher H Bryant, Stephen H Muggleton, Douglas B Kell, and

Stephen G Oliver. Functional genomic hypothesis generation and experi-

mentation by a robot scientist. Nature, 427(6971):247–252, 2004.

[L+06] Greg Landrum et al. Rdkit: Open-source cheminformatics. https://www.

rdkit.org/docs/index.html, 2006.

[Lav90] Nada Lavrac. Principles of knowledge acquisition in expert systems. PhD

thesis, Ph. D. thesis, Faculty of Technical Sciences, University of Maribor,

1990.

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,

Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-

agation applied to handwritten zip code recognition. Neural computation,

1(4):541–551, 1989.

174

https://www.rdkit.org/docs/index.html
https://www.rdkit.org/docs/index.html

[LDG91] Nada Lavrač, Sašo Džeroski, and Marko Grobelnik. Learning nonrecur-

sive definitions of relations with linus. In European Working Session on

Learning, pages 265–281. Springer, 1991.

[LFJ+18] Lei Li, Min Feng, Lianwen Jin, Shenjin Chen, Lihong Ma, and Jiakai

Gao. Domain knowledge embedding regularization neural networks for

workload prediction and analysis in cloud computing. J. Inf. Technol.

Res., 11(4):137–154, October 2018.

[LIJ+15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-

tokostas, Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick

Van Kleef, Sören Auer, et al. Dbpedia–a large-scale, multilingual knowl-

edge base extracted from wikipedia. Semantic web, 6(2):167–195, 2015.

[Lip16] Zachary C. Lipton. The mythos of model interpretability. arXiv preprint

arXiv:1606.03490, 2016.

[LLK19] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling.

In International Conference on Machine Learning, pages 3734–3743, 2019.

[Llo12] John W Lloyd. Foundations of logic programming. Springer Science &

Business Media, 2012.

[Lod13] Huma Lodhi. Deep relational machines. In International Conference on

Neural Information Processing, pages 212–219. Springer, 2013.

[LS20] Tao Li and Vivek Srikumar. Augmenting neural networks with first-order

logic. In ACL 2019 - 57th Annual Meeting of the Association for Compu-

tational Linguistics, Proceedings of the Conference, 2020.

[LSR20] Nada Lavrac, Blaz Skrlj, and Marko Robnik-Sikonja. Propositionalization

and embeddings: two sides of the same coin. Mach. Learn., 109(7):1465–

1507, 2020.

[LWM18] Xuan Liu, Xiaoguang Wang, and Stan Matwin. Improving the inter-

pretability of deep neural networks with knowledge distillation. arXiv

preprint arXiv:1812.10924, 2018.

[LZZ21] Xing Luo, Dongxiao Zhang, and Xu Zhu. Deep learning based forecast-

ing of photovoltaic power generation by incorporating domain knowledge.

Energy, 225:120240, 2021.

[Mar18] Gary Marcus. Deep Learning: A Critical Appraisal. arXiv, jan 2018.

175

[Mar20] Gary Marcus. The next decade in ai: four steps towards robust artificial

intelligence. arXiv preprint arXiv:2002.06177, 2020.

[MB88] Stephen Muggleton and Wray Buntine. Machine invention of first-order

predicates by inverting resolution. In Machine Learning Proceedings 1988,

pages 339–352. Elsevier, 1988.

[MCP+21] Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav Gupta, and Marcus

Rohrbach. Krisp: Integrating implicit and symbolic knowledge for open-

domain knowledge-based vqa. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pages 14111–14121,

2021.

[Md94] Stephen Muggleton and Luc de Raedt. Inductive logic programming: The-

ory and methods. The Journal of Logic Programming, 19-20:629–679, 1994.

Special Issue: Ten Years of Logic Programming.

[MDK+18] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas De-

meester, and Luc De Raedt. Deepproblog: Neural probabilistic logic pro-

gramming. Advances in Neural Information Processing Systems, 31:3749–

3759, 2018.

[MDRP+12] Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter Flach,

Katsumi Inoue, and Ashwin Srinivasan. Ilp turns 20. Machine learning,

86(1):3–23, 2012.

[Mic73] Ryszard S. Michalski. Discovering classification rules using variable-valued

logic system VL1. In Nils J. Nilsson, editor, Proceedings of the 3rd Inter-

national Joint Conference on Artificial Intelligence. Standford, CA, USA,

August 20-23, 1973, pages 162–172. William Kaufmann, 1973.

[Mic80] Ryszard S Michalski. Pattern recognition as rule-guided inductive infer-

ence. IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-2(4):349–361, 1980.

[MIM+19] Nikhil Muralidhar, Mohammad Raihanul Islam, Manish Marwah, Anuj

Karpatne, and Naren Ramakrishnan. Incorporating Prior Domain Knowl-

edge into Deep Neural Networks. In Proceedings - 2018 IEEE International

Conference on Big Data, Big Data 2018, 2019.

[MMBC21] Omar Mahmood, Elman Mansimov, Richard Bonneau, and Kyunghyun

Cho. Masked graph modeling for molecule generation. Nature communi-

cations, 12(1):1–12, 2021.

176

[MMPS94] Donald Michie, Stephen Muggleton, David Page, and Ashwin Srinivasan.

To the international computing community: A new east-west challenge.

Distributed email document available from https: // www. doc. ic. ac.

uk/ ~ shm/ Papers/ ml-chall. pdf , 1994.

[MOHU03] Kenneth A Marx, Philip O’Neil, Patrick Hoffman, and ML Ujwal. Data

mining the nci cancer cell line compound gi50 values: identifying quinone

subtypes effective against melanoma and leukemia cell classes. Journal of

chemical information and computer sciences, 43(5):1652–1667, 2003.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas

immanent in nervous activity. The bulletin of mathematical biophysics,

5(4):115–133, 1943.

[MR19] Kit-Kay Mak and Pichika. Mallikarjuna Rao. Artificial intelligence in drug

development: present status and future prospects. Drug Discovery Today,

24(3):773–780, 2019.

[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton,

Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman

go neural: Higher-order graph neural networks. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, pages 4602–4609, 2019.

[MS98] Eric McCreath and Arun Sharma. LIME: A System for Learning Relations.

In International Conference on Algorithmic Learning Theory, pages 336–

374. Springer, 1998.

[Mug87] Stephen Muggleton. Duce, an oracle-based approach to constructive in-

duction. In IJCAI, pages 287–292. Citeseer, 1987.

[Mug91] Stephen Muggleton. Inductive logic programming. New generation com-

puting, 8(4):295–318, 1991.

[Mug95] Stephen Muggleton. Inverse entailment and progol. New generation com-

puting, 13(3-4):245–286, 1995.

[Mug96] Stephen Muggleton. Learning from positive data. In International confer-

ence on inductive logic programming, pages 358–376. Springer, 1996.

[MW+97] Alan D McNaught, Andrew Wilkinson, et al. Compendium of chemical

terminology, volume 1669. Blackwell Science Oxford, 1997.

[MZB+21] Fanhe Ma, Faen Zhang, Shenglan Ben, Shuxin Qin, Pengcheng Zhou,

Changsheng Zhou, and Fengyi Xu. Monotonic neural network: combining

177

https://www.doc.ic.ac.uk/~shm/Papers/ml-chall.pdf
https://www.doc.ic.ac.uk/~shm/Papers/ml-chall.pdf

deep learning with domain knowledge for chiller plants energy optimiza-

tion. arXiv preprint arXiv:2106.06143, 2021.

[Nea95] Radford M. Neal. Bayesian Learning for Neural Networks. PhD thesis,

University of Toronto, CAN, 1995. AAINN02676.

[Nil91] Nils J Nilsson. Logic and artificial intelligence. Artificial intelligence,

47(1-3):31–56, 1991.

[OOD+21] Ivan Olier, Oghenejokpeme I Orhobor, Tirtharaj Dash, Andy M Davis,

Larisa N Soldatova, Joaquin Vanschoren, and Ross D King. Transforma-

tional machine learning: Learning how to learn from many related scientific

problems. Proceedings of the National Academy of Sciences, 118(49), 2021.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, et al. Pytorch: An imperative style, high-performance deep

learning library. In Advances in Neural Information Processing Systems,

pages 8024–8035, 2019.

[PIT18] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforce-

ment learning for de novo drug design. Science Advances, 4(7):eaap7885,

2018.

[PKD+19] Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, and Christos

Faloutsos. Estimating Node Importance in Knowledge Graphs Using Graph

Neural Networks, page 596–606. Association for Computing Machinery,

New York, NY, USA, 2019.

[Plo70] Gordon D Plotkin. A note on inductive generalization. Machine intelli-

gence, 5(1):153–163, 1970.

[Plo72] Gordon Plotkin. Automatic methods of inductive inference. PhD Thesis,

The University of Edinburgh, 1972.

[Pre98] Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of

the trade, pages 55–69. Springer, 1998.

[PSS20] Hemant Purohit, Valerie L Shalin, and Amit P Sheth. Knowledge graphs

to empower humanity-inspired ai systems. IEEE Internet Computing,

24(4):48–54, 2020.

[PW80] Fernando CN Pereira and David HD Warren. Definite clause grammars for

language analysis—a survey of the formalism and a comparison with aug-

mented transition networks. Artificial intelligence, 13(3):231–278, 1980.

178

[Qui90] J. Ross Quinlan. Learning logical definitions from relations. Machine

learning, 5(3):239–266, 1990.

[Rae10] Luc De Raedt. Inductive Logic Programming, pages 529–537. Springer

US, Boston, MA, 2010.

[RBSR14] Tim Rocktäschel, Matko Bosnjak, Sameer Singh, and Sebastian Riedel.

Low-dimensional embeddings of logic. In Proceedings of the ACL 2014

Workshop on Semantic Parsing, pages 45–49, Baltimore, MD, June 2014.

Association for Computational Linguistics.

[RDMM20] Luc de Raedt, Sebastijan Dumančić, Robin Manhaeve, and Giuseppe

Marra. From statistical relational to neuro-symbolic artificial intelligence.

In Christian Bessiere, editor, Proceedings of the Twenty-Ninth Interna-

tional Joint Conference on Artificial Intelligence, IJCAI-20, pages 4943–

4950. International Joint Conferences on Artificial Intelligence Organiza-

tion, 7 2020. Survey track.

[RGL+20] Ryan Riegel, Alexander G. Gray, Francois P. S. Luus, Naweed Khan, Ndi-

vhuwo Makondo, Ismail Yunus Akhalwaya, Haifeng Qian, Ronald Fagin,

Francisco Barahona, Udit Sharma, Shajith Ikbal, Hima Karanam, Sumit

Neelam, Ankita Likhyani, and Santosh K. Srivastava. Logical neural net-

works. CoRR, abs/2006.13155, 2020.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning

representations by back-propagating errors. nature, 323(6088):533–536,

1986.

[RJBS07] Ganesh Ramakrishnan, Sachindra Joshi, Sreeram Balakrishnan, and Ash-

win Srinivasan. Using ilp to construct features for information extraction

from semi-structured text. In International Conference on Inductive Logic

Programming, pages 211–224. Springer, 2007.

[Rob97] Sam Roberts. An introduction to progol. Department of Computer Sci-

ence, University of York, 244, 1997.

[Ros57] Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton

Project Para. Cornell Aeronautical Laboratory, 1957.

[RP20] Alan Ramponi and Barbara Plank. Neural unsupervised domain adapta-

tion in nlp—a survey. In Proceedings of the 28th International Conference

on Computational Linguistics, pages 6838–6855, 2020.

179

[RS22] Davor Runje and Sharath M Shankaranarayana. Constrained monotonic

neural networks. arXiv preprint arXiv:2205.11775, 2022.

[RSR15] Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical

background knowledge into embeddings for relation extraction. In Pro-

ceedings of the 2015 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technolo-

gies, pages 1119–1129, Denver, Colorado, May–June 2015. Association for

Computational Linguistics.

[RSSB05] Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi. Graph

kernels for chemical informatics. Neural networks, 18(8):1093–1110, 2005.

[Ruc91] William H. Ruckle. A discrete search game. In Theory and Decision

Library, pages 29–43. Springer Netherlands, 1991.

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint

programming. Elsevier, 2006.

[RWC+19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. Language models are unsupervised multitask learners.

OpenAI blog, 1(8):9, 2019.

[SAZ+18] Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezny, Steven Schockaert,

and Ondrej Kuzelka. Lifted relational neural networks: Efficient learning

of latent relational structures. Journal of Artificial Intelligence Research,

62:69–100, 2018.

[SB86] Claude Sammut and Ranan B Banerji. Learning concepts by asking ques-

tions. Machine learning: An artificial intelligence approach, 2:167–192,

1986.

[Sch15] Jürgen Schmidhuber. Deep learning in neural networks: An overview.

Neural networks, 61:85–117, 2015.

[SdCRG21] Prithviraj Sen, Breno W. S. R. de Carvalho, Ryan Riegel, and Alexan-

der G. Gray. Neuro-symbolic inductive logic programming with logical

neural networks. CoRR, abs/2112.03324, 2021.

[SFK+19] Niclas Stahl, Goran Falkman, Alexander Karlsson, Gunnar Mathiason,

and Jonas Bostrom. Deep reinforcement learning for multiparameter op-

timization in de novo drug design. Journal of Chemical Information and

Modeling, 59(7):621–630, 2019.

180

[SG16] Luciano Serafini and Artur d’Avila Garcez. Logic tensor networks: Deep

learning and logical reasoning from data and knowledge. arXiv preprint

arXiv:1606.04422, 2016.

[SGKW19] A. Sheth, M. Gaur, U. Kursuncu, and R. Wickramarachchi. Shades of

knowledge-infused learning for enhancing deep learning. IEEE Internet

Computing, 23(6):54–63, 2019.

[SGS15] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. High-

way networks. arXiv preprint arXiv:1505.00387, 2015.

[SGT+08] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. The graph neural network model. IEEE Transactions

on Neural Networks, 20(1):61–80, 2008.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning research, 15(1):1929–

1958, 2014.

[SK99] Ashwin Srinivasan and Ross D King. Feature construction with inductive

logic programming: A study of quantitative predictions of biological activ-

ity aided by structural attributes. Data Mining and Knowledge Discovery,

3(1):37–57, 1999.

[SKB03] Ashwin Srinivasan, Ross D King, and Michael E Bain. An empirical study

of the use of relevance information in inductive logic programming. Journal

of Machine Learning Research, 4(Jul):369–383, 2003.

[SKB+18] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van

Den Berg, Ivan Titov, and Max Welling. Modeling relational data with

graph convolutional networks. In European semantic web conference, pages

593–607. Springer, 2018.

[SKTW17] Marwin H.S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P.

Waller. Generating focused molecule libraries for drug discovery with re-

current neural networks. ACS Central Science, 4(1):120–131, 2017.

[SLM20] Mattia Silvestri, Michele Lombardi, and Michela Milano. Injecting domain

knowledge in neural networks: a controlled experiment on a constrained

problem. arXiv preprint arXiv:2002.10742, 2020.

[Šou20] Gustav Šourek. Deep Learning with Relational Logic Representations. PhD

thesis, Czech Technical University in Prague, 2020.

181

[SPG19] Amit Sheth, Swati Padhee, and Amelie Gyrard. Knowledge graphs

and knowledge networks: the story in brief. IEEE Internet Computing,

23(4):67–75, 2019.

[SR11] Ashwin Srinivasan and Ganesh Ramakrishnan. Parameter screening and

optimisation for ilp using designed experiments. Journal of Machine

Learning Research, 12(2), 2011.

[Sri99a] Ashwin Srinivasan. A study of two probabilistic methods for searching

large spaces with ilp, 1999.

[Sri99b] Ashwin Srinivasan. A study of two sampling methods for analyzing large

datasets with ilp. Data Mining and Knowledge Discovery, 3(1):95–123,

Mar 1999.

[Sri01] Ashwin Srinivasan. The Aleph Manual. https://www.cs.ox.ac.uk/

activities/programinduction/Aleph/aleph.html, 2001.

[SS97] Alessandro Sperduti and Antonina Starita. Supervised neural networks for

the classification of structures. IEEE Transactions on Neural Networks,

8(3):714–735, 1997.

[SSJ+09] Lucia Specia, Ashwin Srinivasan, Sachindra Joshi, Ganesh Ramakrishnan,

and Maria das Graças Volpe Nunes. An investigation into feature construc-

tion to assist word sense disambiguation. Machine Learning, 76(1):109–

136, 2009.

[SSR12] Amrita Saha, Ashwin Srinivasan, and Ganesh Ramakrishnan. What kinds

of relational features are useful for statistical learning? In International

Conference on Inductive Logic Programming, pages 209–224. Springer,

2012.

[SSRN06] Lucia Specia, Ashwin Srinivasan, Ganesh Ramakrishnan, and Maria das

Graças Volpe Nunes. Word sense disambiguation using inductive logic pro-

gramming. In International Conference on Inductive Logic Programming,

pages 409–423. Springer, 2006.

[St̊a21] Niclas St̊ahl. Integrating domain knowledge into deep learning: Increas-

ing model performance through human expertise. PhD thesis, Högskolan i

Skövde, 2021.

[STE13] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neural

networks for object detection. In C. J. C. Burges, L. Bottou, M. Welling,

182

https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html

Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Infor-

mation Processing Systems, volume 26. Curran Associates, Inc., 2013.

[STN+20] Rick Stevens, Valerie Taylor, Jeff Nichols, Arthur Barney Maccabe,

Katherine Yelick, and David Brown. Ai for science. Technical report,

Argonne National Lab.(ANL), Argonne, IL (United States), 2020.

[Sto76] Lawrence D Stone. Theory of optimal search, volume 118. Elsevier, 1976.

[SWP+20] Petra Schneider, W Patrick Walters, Alleyn T Plowright, Norman Sieroka,

Jennifer Listgarten, Robert A Goodnow, Jasmin Fisher, Johanna M

Jansen, José S Duca, Thomas S Rush, et al. Rethinking drug design in the

artificial intelligence era. Nature Reviews Drug Discovery, 19(5):353–364,

2020.

[SYS+20] Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres

Cubillos-Ruiz, Nina M Donghia, Craig R MacNair, Shawn French, Lind-

sey A Carfrae, Zohar Bloom-Ackermann, et al. A deep learning approach

to antibiotic discovery. Cell, 180(4):688–702, 2020.

[ŠŽK21] Gustav Šourek, Filip Železnỳ, and Ondřej Kuželka. Beyond graph neural

networks with lifted relational neural networks. Machine Learning, pages

1–44, 2021.

[TA18] Naoya Takeishi and Kosuke Akimoto. Knowledge-based distant regular-

ization in learning probabilistic models. arXiv preprint arXiv:1806.11332,

2018.

[Tan97] Ah Hwee Tan. Cascade ARTMAP: Integrating neural computation and

symbolic knowledge processing. IEEE Transactions on Neural Networks,

1997.

[THDS15] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultane-

ous deep transfer across domains and tasks. In Proceedings of the IEEE

international conference on computer vision, pages 4068–4076, 2015.

[THM21] Efthymia Tsamoura, Timothy Hospedales, and Loizos Michael. Neural-

symbolic integration: A compositional perspective. Proceedings of the

AAAI Conference on Artificial Intelligence, 35(6):5051–5060, May 2021.

[TS93] Geoffrey G Towell and Jude W Shavlik. Extracting refined rules from

knowledge-based neural networks. Machine learning, 13(1):71–101, 1993.

183

[TS94] Geoffrey G Towell and Jude W Shavlik. Knowledge-based artificial neural

networks. Artificial intelligence, 70(1-2):119–165, 1994.

[TSN90] Geofrey G Towell, Jude W Shavlik, and Michiel O Noordewier. Refine-

ment of approximate domain theories by knowledge-based neural networks.

In Proceedings of the eighth National conference on Artificial intelligence,

volume 861866. Boston, MA, 1990.

[Tur50] A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–

460, 1950.

[TVdM18] Niket Tandon, Aparna S. Varde, and Gerard de Melo. Commonsense

knowledge in machine intelligence. SIGMOD Rec., 46:49–52, 2018.

[VCC+18] Petar Velic̆ković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Liò, and Yoshua Bengio. Graph attention networks. In International

Conference on Learning Representations, 2018.

[VCVD02] E. Van Craenenbroeck, H. Vandecasteele, and L. Dehaspe. Dmax’s func-

tional group and ring library. https://dtai.cs.kuleuven.be/software/

dmax/, 2002.

[vRMB+21] Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev,

Sven Giesselbach, Raoul Heese, Birgit Kirsch, Michal Walczak, Julius

Pfrommer, Annika Pick, et al. Informed machine learning-a taxonomy

and survey of integrating prior knowledge into learning systems. IEEE

Transactions on Knowledge and Data Engineering, 2021.

[VSBV17] Lovekesh Vig, Ashwin Srinivasan, Michael Bain, and Ankit Verma. An

investigation into the role of domain-knowledge on the use of embeddings.

In Nicolas Lachiche and Christel Vrain, editors, Inductive Logic Program-

ming - 27th International Conference, ILP 2017, Orléans, France, Septem-

ber 4-6, 2017, Revised Selected Papers, volume 10759 of Lecture Notes in

Computer Science, pages 169–183. Springer, 2017.

[VSKB10] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and

Karsten M Borgwardt. Graph kernels. Journal of Machine Learning Re-

search, 11:1201–1242, 2010.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. In Advances in neural information processing systems,

pages 5998–6008, 2017.

184

https://dtai.cs.kuleuven.be/software/dmax/
https://dtai.cs.kuleuven.be/software/dmax/

[WBS+15] Kevin Williams, Elizabeth Bilsland, Andrew Sparkes, Wayne Aubrey,

Michael Young, Larisa N Soldatova, Kurt De Grave, Jan Ramon, Michaela

De Clare, Worachart Sirawaraporn, et al. Cheaper faster drug develop-

ment validated by the repositioning of drugs against neglected tropical

diseases. Journal of the Royal society Interface, 12(104):20141289, 2015.

[WD18] Mei Wang and Weihong Deng. Deep visual domain adaptation: A survey.

Neurocomputing, 312:135–153, 2018.

[Wei88] David Weininger. SMILES, a chemical language and information system.

1. introduction to methodology and encoding rules. Journal of chemical

information and computer sciences, 28(1):31–36, 1988.

[Wil89] Andrew F Wilks. Two putative protein-tyrosine kinases identified by ap-

plication of the polymerase chain reaction. Proceedings of the National

Academy of Sciences, 86(5):1603–1607, 1989.

[WMMR21] Thomas Winters, G. Marra, Robin Manhaeve, and L. D. Raedt. Deep-

stochlog: Neural stochastic logic programming. ArXiv, abs/2106.12574,

2021.

[WPC+20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,

and S Yu Philip. A comprehensive survey on graph neural networks. IEEE

Transactions on Neural Networks and Learning Systems, 2020.

[WZX+19] Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, and Minyi Guo. Knowl-

edge graph convolutional networks for recommender systems. In The

World Wide Web Conference, WWW ’19, page 3307–3313, New York,

NY, USA, 2019. Association for Computing Machinery.

[XHLJ19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful

are graph neural networks? In International Conference on Learning

Representations, 2019.

[XXK+19] Yaqi Xie, Ziwei Xu, Mohan S. Kankanhalli, Kuldeep S. Meel, and Harold

Soh. Embedding symbolic knowledge into deep networks. In Advances in

Neural Information Processing Systems, 2019.

[XZF+18] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van Den

Broeck. A semantic loss function for deep learning with symbolic knowl-

edge. In 35th International Conference on Machine Learning, ICML 2018,

2018.

185

[YLD+21] Shweta Yadav, Usha Lokala, Raminta Daniulaityte, Krishnaprasad

Thirunarayan, Francois Lamy, and Amit Sheth. “when they say weed

causes depression, but it’s your fav antidepressant”: Knowledge-aware at-

tention framework for relationship extraction. PloS one, 16(3):e0248299,

2021.

[YN13] Shuo Yang and Sriraam Natarajan. Knowledge intensive learning: Com-

bining qualitative constraints with causal independence for parameter

learning in probabilistic models. In Joint European Conference on Ma-

chine Learning and Knowledge Discovery in Databases, pages 580–595.

Springer, 2013.

[YZQ+19] Changchang Yin, Rongjian Zhao, Buyue Qian, Xin Lv, and Ping Zhang.

Domain knowledge guided deep learning with electronic health records.

In 2019 IEEE International Conference on Data Mining (ICDM), pages

738–747. IEEE, 2019.

[ZCH+20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph

neural networks: A review of methods and applications. AI Open, 1:57–

81, 2020.

[ZKK+21] Jieyu Zhao, Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and Kai-

Wei Chang. Ethical-advice taker: Do language models understand natural

language interventions? In Findings of the Association for Computational

Linguistics: ACL-IJCNLP, pages 4158–4164, 2021.

[ZLLS21] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive

into deep learning. arXiv preprint arXiv:2106.11342, 2021.

[ZQD+20] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu,

Hengshu Zhu, Hui Xiong, and Qing He. A comprehensive survey on trans-

fer learning. Proceedings of the IEEE, 109(1):43–76, 2020.

[ZWQ+19] Zirui Zhuang, Jingyu Wang, Qi Qi, Haifeng Sun, and Jianxin Liao. To-

ward greater intelligence in route planning: A graph-aware deep learning

approach. IEEE Systems Journal, 14(2):1658–1669, 2019.

[ZYZZ18] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network

representation learning: A survey. IEEE transactions on Big Data, 2018.

186

List of Publications

The work carried out in this dissertation have appeared in the following peer-reviewed

publications in reverse chronological order:

1. T. Dash, S. Chitlangia, A. Ahuja, A. Srinivasan, “A review of some techniques

for inclusion of domain-knowledge into deep neural networks”, Nature Scientific

Reports, 2022.

URL: https://doi.org/10.1038/s41598-021-04590-0

2. T. Dash, A. Srinivasan, L. Vig, A. Roy, “Using domain-knowledge to assist lead

discovery in early-stage drug design”, International Conference on Inductive Logic

Programming, 2021.

URL: https://doi.org/10.1007/978-3-030-97454-1_6

3. T. Dash, A. Srinivasan, A. Baskar, “Inclusion of domain-knowledge into GNNs

using mode-directed inverse entailment”, Machine Learning, 2021.

URL: https://doi.org/10.1007/s10994-021-06090-8

4. T. Dash, A. Srinivasan, L. Vig, “Incorporating symbolic domain knowledge into

graph neural networks”, Machine Learning, 2021.

URL: https://doi.org/10.1007/s10994-021-05966-z

5. T. Dash, A. Srinivasan, R.S. Joshi, A. Baskar, “Discrete stochastic search and its

application to feature-selection for deep relational machines”, International Con-

ference on Artificial Neural Networks, 2019.

URL: https://doi.org/10.1007/978-3-030-30484-3_3

6. T. Dash, A. Srinivasan, L. Vig, O.I. Orhobor, R.D. King, “Large-scale assessment

of deep relational machines”, International Conference on Inductive Logic Program-

ming, 2018.

URL: https://doi.org/10.1007/978-3-319-99960-9_2

(⋆Winner of the Best Student Paper Award)

187

https://doi.org/10.1038/s41598-021-04590-0
https://doi.org/10.1007/978-3-030-97454-1_6
https://doi.org/10.1007/s10994-021-06090-8
https://doi.org/10.1007/s10994-021-05966-z
https://doi.org/10.1007/978-3-030-30484-3_3
https://doi.org/10.1007/978-3-319-99960-9_2

The author was involved in several other publications during his PhD. These publications

do not constitute any content of this dissertation, but each publication has served as a

motivation for the problem investigated in this dissertation. A non-exhaustive list of

peer-reviewed publications is provided below.

1. G. Chhablani, A. Sharma, H. Pandey, T. Dash, “Superpixel-based Knowledge In-

fusion in Deep Neural Networks for Image Classification”, ACM Southeast Regional

Conference, 2022.

URL: https://doi.org/10.1145/3476883.3520216

(⋆Winner of the Best Short Paper Award)

2. A. Sonwane, G. Shroff, L. Vig, A. Srinivasan, T. Dash, “Solving Visual Analogies

Using Neural Algorithmic Reasoning”, AAAI Student Abstract and Poster Program,

2022.

URL: https://arxiv.org/abs/2111.10361

3. I. Olier, O.I. Orhobor, T. Dash, A.M. Davis, L.N. Soldatova, J. Vanschoren, R.D.

King, “Transformational machine learning: Learning how to learn from many re-

lated scientific problems”, Proceedings of the National Academy of Sciences of the

U.S.A., 2021.

URL: https://doi.org/10.1073/pnas.2108013118

4. S. Chitlangia, A. Sonwane, T. Dash, L. Vig, A. Srinivasan, G. Shroff, “Using Pro-

gram Synthesis and Inductive Logic Programming to solve Bongard Problems”, In-

ternational Workshop on Approaches and Applications of Inductive Programming,

2021.

URL: https://lr2020.iit.demokritos.gr/online/IJCLR_2021_paper_21.pdf

5. H. Shah, A. Vaswani, T. Dash, R. Hebbalaguppe, A. Srinivasan, “Empirical Study

of Data-Free Iterative Knowledge Distillation”, International Conference on Artifi-

cial Neural Networks, 2021.

URL: https://doi.org/10.1007/978-3-030-86365-4_44

6. S. Krishnan, R. Khincha, L. Vig, T. Dash, A. Srinivasan, “A Case Study of Transfer

of Lesion-Knowledge”, MICCAI Workshop on Medical Image Learning with Less

Labels and Imperfect Data, 2020.

URL: https://doi.org/10.1007/978-3-030-61166-8_15

7. K. Mahajan, M. Sharma, L. Vig, R. Khincha, S. Krishnan, A. Niranjan, T. Dash,

A. Srinivasan, G. Shroff, “CovidDiagnosis: Deep Diagnosis of Covid-19 Patients

using Chest X-rays”, MICCAI Workshop on Thoracic Image Analysis, 2020.

URL: https://doi.org/10.1007/978-3-030-62469-9_6

188

https://doi.org/10.1145/3476883.3520216
https://arxiv.org/abs/2111.10361
https://doi.org/10.1073/pnas.2108013118
https://lr2020.iit.demokritos.gr/online/IJCLR_2021_paper_21.pdf
https://doi.org/10.1007/978-3-030-86365-4_44
https://doi.org/10.1007/978-3-030-61166-8_15
https://doi.org/10.1007/978-3-030-62469-9_6

8. S. Yalburgi, T. Dash, R. Hebbalaguppe, S. Hegde, A. Srinivasan, “An Empirical

Study of Iterative Knowledge Distillation for Neural Network Compression”, Eu-

ropean Symposium on Artificial Neural Networks, Computational Intelligence and

Machine Learning, 2020.

URL: https://www.esann.org/.../proceedings/2020/ES2020-205.pdf

9. T. Dash, S.N. Dambekodi, P.N. Reddy, A. Abraham, “Adversarial neural networks

for playing hide-and-search board game Scotland Yard”, Neural Computing and

Applications, 2018.

URL: https://doi.org/10.1007/s00521-018-3701-0

10. A. Saboo, A. Sharma, T. Dash, “GASOM: Genetic Algorithm Assisted Architecture

Learning in Self Organizing Maps”, International conference on Neural Information

Processing, 2017.

URL: https://doi.org/10.1007/978-3-319-70087-8_25

11. P.P. Pai, T. Dash, S. Mondal, “Sequence-based discrimination of protein-RNA in-

teracting residues using a probabilistic approach”, Journal of Theoretical Biology,

2017.

URL: https://doi.org/10.1016/j.jtbi.2017.01.040

189

https://www.esann.org/sites/default/files/proceedings/2020/ES2020-205.pdf
https://doi.org/10.1007/s00521-018-3701-0
https://doi.org/10.1007/978-3-319-70087-8_25
https://doi.org/10.1016/j.jtbi.2017.01.040

Brief Biography of the Candidate

Tirtharaj Dash started his PhD in Machine Learning in January 2017 in the Depart-

ment of Computer Science and Information Systems at BITS Pilani, Goa Campus, under

the supervision of Senior Professor Ashwin Srinivasan. He received a Master of Technol-

ogy (M.Tech) degree in Computer Science and Engineering, with one year thesis, from

VSSUT, Burla in the year 2014 and a Bachelor of Technology (B.Tech) degree in In-

formation Technology from NIST Berhampur in the year 2012. He was the topper of

his batch, both in his M.Tech. and B.Tech, and the university and institute awarded

him the Silver Medals. In August 2015, Tirtharaj joined the Department of Computer

Science and Information Systems at BITS Pilani, Goa Campus, as an Assistant Professor

(Grade-II). In June 2020, he was inducted to the Anuradha and Prashanth Palakurthi

Centre for Artificial Intelligence Research (APPCAIR), BITS Pilani, Goa Campus. Be-

fore joining BITS, he worked as an Assistant Professor in the School of Computer Science

at NIST Berhampur for over a year, from 2014–2015. He also worked as an IASc-INSA-

NASI Summer Research Fellow at ISI Kolkata in 2015. His research areas of interest are

Deep Learning, Neuro-Symbolic Learning, Graph Representation Learning and Machine

Learning. He is a regular member of the ACM.

191

Brief Biography of the Supervisor

Ashwin Srinivasan received his PhD from the School of Electrical Engineering and

Computer Science at the University of New South Wales, Australia, in 1991. His disser-

tation examined the use of defeasible logic for the photo-interpretation of remotely sensed

data and investigated the comparative advantage of this representation over methods like

Multivariate Gaussian Analysis and Dempster Shafer Theory. During the latter half of

1990, he developed a non-monotonic logic-based system for interpreting chemical pathol-

ogy data. This was awarded the Pacific Diagnostic’s Prize and recommended for use in all

hospitals in the state of New South Wales. In 1991, Ashwin joined the ILP group at the

Turing Institute, Scotland and—with S. Muggleton (now at Imperial College, London)—

worked on the application of Algorithmic Information Theory to noise-detection and

non-monotonic learning in ILP. From 1993, Ashwin was a member of the Oxford Uni-

versity Computing Laboratory, where he was involved in pioneering applications of ILP

systems to difficult real-world problems in molecular biology and chemistry. From 1998–

2000 he was the Nuffield Trust Research Fellow in Medical Mathematics and a Research

Fellow of Green College, Oxford. In 2001, he was appointed to a University Lecturership

in Computation at Oxford and a Fellowship in Computation at St Peter’s College. Prior

to this, he has also been a member of Wolfson College, Oxford. In 2003, he moved to the

IBM Research – India, as a Research Staff Member. In 2009, he was awarded a Ramanu-

jan Fellowship by the Department of Science and Technology of the Government of India.

In 2010, he took up the post of Professor at the newly formed South Asian University

and became the founder Dean of the Faculty of Mathematics and Computer Science.

He moved to the IIIT-D in Sept. 2012 and in Jan 2015 to BITS Pilani, Goa Campus.

He was also a Visiting Professor at the Computing Laboratory, University of Oxford,

and is a Visiting Professorial Fellow at the School of Computer Science and Engineering,

University of New South Wales.

193

Brief Biography of the Co-supervisor

Sukanta Mondal works in the field of computational biology and bioinformatics to ad-

dress various challenging questions in bio-molecular science. He received his PhD degree

from Indian Institute of Science in 2007, under the supervision of Prof. Ramakumar S,

for thesis work titled “Contributions to venominformatics: sequence-structure-function

studies of toxins from marine cone snails. Application of order-statistics filters for de-

tecting membrane-spanning helices”. After his doctoral studies, Dr. Mondal moved to

National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Japan,

for pursuing post-doctoral research on “Development of an international pharmaceutical

innovation value chain for in silico drug discovery” under the supervision of Prof. Kenji

Mizuguchi. Gathering rich experience at both national and international levels, he initi-

ated his Annotate Biomolecules Computationally (ABC) group in the year 2012, which

currently has various doctoral, graduate and undergraduate students working on protein

functional annotation.

195

	Acknowledgements
	Abstract
	List of Acronyms
	Introduction
	The Importance of Domain-Knowledge
	Difficulties in Inclusion of Domain-Knowledge into Deep Neural Networks
	Contributions of this Dissertation
	Organisation of the Dissertation

	Literature Review
	Focus of this Review
	Transforming the Input Data
	Propositionalisation
	Binary and n-ary Relations

	Transforming the Loss Function
	Syntactic Loss
	Semantic Loss

	Transforming the Model
	Constraints on Parameters
	Specialised Structures

	Summary of the Review

	Inclusion of Domain-Knowledge using Propositionalisation
	Some Logic Programming Concepts
	Relational Data and Relational Features
	Propositionalisation
	A Discrete Space of Relational Features
	Bounding the Lattice of Relational Features

	Utility-based Sampling of Relational Features
	A Distributional Model of Discrete Search

	Application to Deep Relational Machines (DRMs)
	Empirical Evaluation
	Aims
	Materials
	Method
	Results
	Limitations of DRMs

	Summary

	Simplified Inclusion of Relational Information using Vertex-Enrichment
	Graph Neural Networks (GNNs)
	General working principle of GNNs
	Note on GNN variants

	Inclusion of n-ary relations into GNNs by Enriching Vertex-Labels
	Vertex-Enriched GNNs

	Empirical Evaluation
	Aims
	Materials
	Method
	Results
	Limitations of VEGNNs

	Summary

	Complete Inclusion of Relational Information using Inverse Entailment
	Mode-Directed Inverse Entailment
	Modes
	Depth-Limited Bottom Clauses

	BotGNNs
	Notations and Assumptions
	Construction of Bottom-Graphs
	Some Properties of Clause-Graphs
	Transformations for Graph Classification by a GNN
	Note on Differences to Vertex-Enrichment

	Empirical Evaluation
	Aims
	Materials
	Method
	Results

	Summary

	BotGNN as a System Component: An Application to Drug Design
	The Problem
	System Design and Implementation
	Generating Acceptable Molecules
	Obtaining Labels for Acceptable Molecules
	Generating Active Molecules

	System Testing
	Materials
	Method
	Results

	Summary

	Conclusions and Future Work
	Summary of the Dissertation
	The Main Contributions
	The Main Findings

	Challenges and Future Work
	Closing Remarks

	Background
	Deep Neural Networks
	Inductive Logic Programming (ILP)

	Additional Experimental Details
	Details relevant to Chapter 3
	Details relevant to Chapter 5
	Details relevant to Chapter 6

	Bibliography
	List of Publications
	Biography of the Candidate
	Biography of the Supervisor
	Biography of the Co-supervisor

