Explainable Deep Learning and its potential use in TSF

Tirtharaj Dash

University of Cambridge, UK

September 28, 2024

Today

- Explainability and Deep Learning
- "Logically" explainable Deep Neural Nets
- ► Application in TSF, esp. Healthcare

A classical ML problem: classification.

Classical ML:

Human-in-the-Loop ML:

Background knowledge comes from domain-expert(s).

The \oplus points are the port cities, inferrable from boundaries.

Muggleton, Srinivasan, Bain: Compression, significance and accuracy, ML Proceedings, 1992.

Inclusion of domain-knowledge into deep neural networks significantly improves its predictive performance.

	Comparative Performance			
DNN	(with domain-knowledge)			
Type	Better	Same	Worse	
MLP	71	0	2	
GNN	63	9	1	

Dash et al.: MLJ (2021, 2022, 2023), ILP (2018, 2021), Sci.Rep. (2022).

Dash, PhD Thesis, BITS Pilani, 2022.

Explainability or Interpretability is the concept that a machine learning model and its output can be explained in a way that "makes sense" to a human being at an acceptable level.

Ras et al.: Explainable deep learning: A field guide for the uninitiated, JAIR, 2022.

Perturbation-based explanation generation.

Samek et al.: Explainable deep learning: concepts, methods, and new developments. In Explainable Deep Learning AI (pp. 7-33). Academic Press, 2023.

Gradient-based explanation generation.

Surrogate-based explanation generation.

Relevance propagation based explanation generation.

So, what did we see?

Methods to explain "black-box" deep networks post hoc.

- Q1. But, is a deep neural network "truly" explainable?
- Q2. Can we build deep networks that are "explainable by design"?

CRM nodes as Gated nodes

<u>Relational Features</u>: A relational feature takes a clausal form:

$$\mathcal{C}: orall X \; (p(X) \leftarrow \exists oldsymbol{Y} \; \textit{Body}(X, oldsymbol{Y}))$$

or,

$$C: (p(X) \leftarrow Body(X, \boldsymbol{Y}))$$

Here,

p(X): Head literal Body (X, \mathbf{Y}) : Conjunction of body literals

Assumption: C is not self-recursive. We call C a "feature-clause".

Feature clauses:

Let's look at the classic trains problem:

Some feature-clauses for trains:

$$C_{1} : p(X) \leftarrow (has_car(X, Y), short(Y))$$

$$C_{2} : p(X) \leftarrow (has_car(X, Y), short(Y), closed(Y))$$

$$C_{3} : p(X) \leftarrow (has_car(X, Y), has_car(X, Z), short(Y), closed(Z))$$

The predicates $has_car/2$, short/1, closed/1, etc. are defined as part of the background knowledge (*B*) about trains.

Feature functions:

A feature function is defined, for X = a as:

$$f_{C,B}(a) = \begin{cases} 1 & \text{if } B \cup (C\{X/a\}) \models p(a) \\ 0 & \text{otherwise} \end{cases}$$

Simply, for a feature-clause C_i , we refer to the corresponding feature-function as $f_i(X)$.

Example:

Some feature functions are: $f_1(t_1) = 1, f_2(t_1) = 1, f_2(t_2) = 0.$

Ordered Clause:

We impose an ordering of the literals in a clause. If C is a clause of the form $\lambda_1 \leftarrow \lambda_2, \ldots, \lambda_k$, then the ordered clause is: $\langle C \rangle = \langle \lambda_1, \lambda_2, \ldots, \lambda_k \rangle$.

 ρ -derivation of feature-clauses (Composition):

Example 1:

Example 2:

 $C1: p(X) \leftarrow has_car(X, Y), short(Y) \qquad C2: p(X) \leftarrow has_car(X, U), has_car(X, V), smaller(U, V)$

Compositional Relational Machines (CRMs):

CRM nodes as Gated nodes

Relational instance 1:

Relational instance 2:

Evaluation: (a) Predictive fidelity, (b) Explanatory fidelity

Explanation: Constructed by back-tracing the top activations in each layer of the deep neural network.

(A) Synthetic datasets (Trains and Chess)

Trains

Target theory (model) known

Dataset	Fidelity			
	CRM		Baseline	
	Pred.	Expl.	Pred.	Expl.
Trains	1.0	1.0	0.5	0.4
Chess	1.0	0.9	0.7	0.7

Some explanations generated by the CRM:

<u>Target theory:</u> Train X has a car Y and Y is short and closed.

<u>Target theory:</u> White Rook and Black King are on the same file (column).

(B) <u>Real datasets</u> (drug design: NCI GI50; n = 10)

Target theory is not known. BotGNNs are used as the target models [Dash et al., MLJ, 2022].

Results: Predictive fidelity

Dataset	CRM	Baseline	
786_0	0.77	0.53	
A498	0.79	0.59	
A549_ATCC	0.85	0.63	
ACHN	0.73	0.58	
BT_549	0.78	0.51	
CAKI_1	0.81	0.69	
CCRF_CEM	0.82	0.68	
COLO_205	0.77	0.53	
DLD_1	0.90	1.00	
DMS_114	0.89	0.91	
Avg.	0.81 (0.05)	0.66 (0.17)	

An explanation generated by CRM:

Srinivasan, Baskar, Dash, Shah: MLJ, 2023.

Lead positions for a 12-lead ECG with 12 views of the heart

ECG complex - 1 heartbeat

How doctors see it?

Shah et al.: NEUROLOG, arXiv, 2022.

Thank you!

tirtharajdash.github.io