"Logically" Explainable Deep Networks and an application in drug discovery

Tirtharaj Dash

Susanne Bornelöv Lab, CRUK Cambridge Institute University of Cambridge, UK

December 5, 2024

Data (observations)

How we represent them

How do we explain these machines

If input is...

the explanation can be...

for the prediction ...

Ras et al.: Explainable deep learning: A field guide for the uninitiated, JAIR, 2022.

Samek et al.: Explainable deep learning: concepts, methods, and new developments. Academic Press, 2023.

ML with Domain-Knowledge

m1: CC1=CC=C(C=C1)C2=NN=C(S2)NC3=CC=C(C=C3)F

m2: CC(C)CC1=CC=CC=C1

Tofacitinib:

contains aromatic and heterocyclic rings with functional groups (amine, thiol, fluorine) and a higher degree of molecular complexity, potentially allowing interaction with JAK2.

Isobutylbenzene:

Contains only a benzene ring and an alkyl chain, simple structure, less likely to engage in specific interactions with JAK2.

ML with Domain-Knowledge

- A deep model's decision should be explained in a manner that domain-experts can understand.
- Constructing deep models using data and domain-knowledge can help us achieve that.

This talk: Compositional Relational Machine (CRM)

This talk: Compositional Relational Machine (CRM)

- 1. Data and background knowledge are uniformly represented in a relational representation (e.g. Prolog).
- 2. Using some language restrictions, a set of simple features are constructed. (a "template library of features")
- 3. These simple features can be composed to produce "complex" features. We propose two ρ -operations (ρ_1 and ρ_2).
- 4. A *d*-depth composition results in a composition graph.

Simple features:

p(X) :- q(X,Y), r(Y).
p(X) :- q(X,Y), r(Y), s(Y).
p(X) :- q(X,Y), r(X,Z), s(Y), t(Z).

The last feature is not a simple feature.

We read p() := q(), r() as "if q and r then p." Or, if q is TRUE and r is TRUE then p is TRUE. p() := q() is also denoted as $p() \leftarrow q()$.

 $f_1(t_1) = 1$. Train T1 contains a short car. Clause C_1 evaluates to TRUE. $f_2(t_2) = 0$. Train T2 contains a short car, but it is not closed. Clause C_2 evaluates to FALSE. ...

 ρ -derivation of feature-clauses (Composition):

Example 1:

Example 2:

 $C1: p(X) \leftarrow has_car(X, Y), short(Y) \qquad C2: p(X) \leftarrow has_car(X, U), has_car(X, V), smaller(U, V)$

d-depth composition results in a template for a DNN structure.

Maximum in-degree is 2. \rightarrow A CRM is a compressed network.

For each data instance, we can now ground this structure template.

Relational instance 1:

Relational instance 2:

Computation in a CRM:

Inspired from: Alan Turing's idea of B-type networks and unorganised machines (1948)

For a mini-batch of data instances:

- 1. Perform forward pass to compute the class-conditional probabilities, $p(Y = y_i | X)$
- 2. Compute loss (e.g. cross-entropy for classification)
- 3. Perform gradient descent to update model parameters $(w_{ij}s)$

Model Explanation:

For any data instance, X:

- 1. Compute the prediction, $\hat{y} = m^*(X)$
- 2. Perform Layerwise Relevance Propagation (Bach et al., PloS one, 2015.)

CRM's explanation is a structured tree.

Evaluation

(A) Synthetic datasets: Target theory (model) is known.

Train t_1

(With the substitution $\{X/t1\}$)

ard (d, 7, e, 1, e, 6) (With the substitution $\{A/d, B/7, \dots, F/6\}$)

<u>Target theory:</u> Train X has a car Y and Y is short and closed.

<u>Target theory:</u> White Rook and Black King are on the same file (column).

Evaluation

(B) <u>Real datasets (NCI GI-50)</u>: Activity of chemical compounds in cancer cell-line experiments; a database of (

Target theory is not known.

Joint work with: Ashwin Srinivasan, A. Baskar, Devanshu Shah

Machine Learning Journal, 113, 1091-1132, (2024). https://rdcu.be/d2jGF

Code: https://github.com/tirtharajdash/CRM

Appendix

$p(\Theta|D, B) \propto p(\Theta|B) \times p(D|\Theta, B)$

If data D is limited, the prior becomes very important.