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How do we explain these machines
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Ras et al.: Explainable deep learning: A field guide for the uninitiated, JAIR, 2022.
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ML with Domain-Knowledge
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m1: CC1=CC=C(C=C1)C2=NN=C(S2)NC3=CC=C(C=C3)F

H
NYN\N Tofacitinib:
Y contains aromatic and heterocyclic rings with

class: Positive functional groups (amine, thiol, fluorine)
and a higher degree of molecular complexity,
potentially allowing interaction with JAK2.
m2: CC(C)CC1=CC=CC=C1 Isobutylbenzene:
Contains only a benzene ring and an alkyl chain,
m class: Negative simple structure, less likely to engage
in specific interactions with JAK2.



ML with Domain-Knowledge

» A deep model’s decision should be explained in a manner that
domain-experts can understand.

» Constructing deep models using data and domain-knowledge
can help us achieve that.



This talk: Compositional Relational Machine (CRM)
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This talk: Compositional Relational Machine (CRM)
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CRM

1. Data and background knowledge are uniformly represented in
a relational representation (e.g. Prolog).

2. Using some language restrictions, a set of simple features are
constructed. (a “template library of features")

3. These simple features can be composed to produce “complex’
features. We propose two p-operations (p1 and p2).

o

. A d-depth composition results in a composition graph.




CRM

Simple features:

pX) - qX,Y), r(\N.
pX) - qX,V), r(Y), s().

p(X) :- qX,Y), r(X,2), s(Y), t(2).

The last feature is not a simple feature.

We read ‘p() - q0, rQO. ‘as “if g and r then p.”
Or, if g is TRUE and r is TRUE then p is TRUE.

p() - q(). is also denoted as p() < q().



CRM

Train classification problem:

Simple features library:
Cq:p(X) :- has_car(X,Y),
f short (Y).
e ¢ s e e . . o
™ eastbound Cz:p(X) :- has_car(X,Y),
AR short (Y),
—e- s .©. . closed(Y) .
T2 westbound Cy:p(X)

- has_car(X,Y),
has_car(X,2),
short (Y),

closed(Z) .
f1(t1) = 1. Train T1 contains a short car. Clause C; evaluates to TRUE.

f2(t2) = 0. Train T2 contains a short car, but it is not closed. Clause C, evaluates to FALSE.



CRM

p-derivation of feature-clauses (Composition):

Example 1:

p(X) <= has_car(X, Y), short(Y),
has_car(X, Z), closed(Z),
Y=2Z

p(X) < has_car(X, Y), short(Y),
has_car(X, Z), closed(Z)

C1l: p(X) < has_car(X,Y), short(Y) C2: p(X) < has_car(X, Z), closed(Z)



CRM

Example 2:

p(X) « has_car(X, U), has_car(X, V), smaller(U, V),
has_car(X, Y),short(Y), U=V, U=Y

p(X) « has_car(X, U), has_car(X, V), smaller(U, V),
has_car(X, Y),short(Y), U=V

p(X) <= has_car(X, U), has_car(X, V), smaller(U, V),
has_car(X, Y), short(Y)

)

C1: p(X) « has_car(X,Y),short(Y)  C2: p(X) « has_car(X, U), has_car(X, V), smaller(U, V)



CRM

d-depth composition results in a template for a DNN structure.

p(Y =ylX)

\
A
Fully connected

composition depth

Maximum in-degree is 2. — A CRM is a compressed network.



CRM

p(Y =yIX)

\
A
Fully connected

composition depth

For each data instance, we can now ground this structure template.



CRM

Relational instance 1:

T

T2



CRM

Computation in a CRM:

i : fi@ ifv, el
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CRM nodes as Gated nodes

Inspired from: Alan Turing's idea of B-type networks and unorganised machines (1948)



CRM

For a mini-batch of data instances:

1. Perform forward pass to compute the class-conditional
probabilities, p(Y = y;|X)

2. Compute loss (e.g. cross-entropy for classification)

3. Perform gradient descent to update model parameters (wj;s)



CRM

Model Explanation:

For any data instance, X:
1. Compute the prediction, y = m*(X)

2. Perform Layerwise Relevance Propagation (sach et i, pios one, 2015.)

CRM’s explanation is a structured tree.
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Evaluation

(A) Synthetic datasets: Target theory (model) is known.

P
has_car(X, A), short(A),
has_car(X, B), closed(B),

B

MAB,C.D,EF)
1A, C),C = E, adj(B,’)

P(A.B,C,D,E )~
C = E,adj(B,F)

P(AB,C,D,EF) P(A.B,C,D,EF) P(A.B,C,D,E )~
A, C=E adj(B, F)

Board (d,7,e,1,e,6) (With the substitution {A/d, B/7,...,F/6})

- pX) —
e has_car(X, A"), short(A’),
has_car(X, BY), closed(B'),

AN

(X) PO~
has_car(X, A”), has_car(X, A”),
short(A”) closed(A”)

Train £, (With the substitution {X/¢1})

Target theory: Train X has a car Y and Target theory: White Rook and Black King are
Y is short and closed. on the same file (column).




Evaluation

(B) Real datasets (NCI GI-50): Activity of chemical compounds in

. . RSIF .
cancer cell-line experiments; a database of ( *< ", class) pairs.

P —
has_struc(X, A, B, hetero_aromatic),
Iteq(B,7),
has_struc(X, C, D, amine),
lteq(D, 2),
has_struc(X, E, F, oxide),
Iteq(F,7)
Domain-knowledge used:
. X)
1. Functional groups has_struc(X, A, B, amine),
2. Ring structures Iteq(B, 2),
3. Fused structures has_struc(X, C, D, oxide),
4. Connected structures lteq(D, 7)

3, 4 are inferred from 1, 2. / \

PX) < PX) = PX) <
has_struc(X, A, B, hetero_aromatic), has_struc(X, A, B, amine), has_struc(X, A, B, oxide),
Iteq(B, 7) Iteq(B, 2) Iteq(B, 7)

Target theory is not known.



Thank you.

Joint work with: Ashwin Srinivasan, A. Baskar, Devanshu Shah

Machine Learning Journal, 113, 1091-1132, (2024).
https://rdcu.be/d2jGF

Code: https://github.com/tirtharajdash/CRM


https://rdcu.be/d2jGF
https://github.com/tirtharajdash/CRM

Appendix

Prior Likelihood
p(@ID, B) « p(@[B) x p(D|O, B)

If data D is limited, the prior becomes very important.



